Example 1 Evaluate the surface integral of the vector field $\mathbf{F}=3 x^{2} \mathbf{i}-2 y x \mathbf{j}+8 \mathbf{k}$ over the surface S that is the graph of $z=2 x-y$ over the rectangle $[0,2] \times[0,2]$.

Solution. Use the formula for a surface integral over a graph $z=g(x, y)$:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left[\mathbf{F} \cdot\left(-\frac{\partial g}{\partial x} \mathbf{i}-\frac{\partial g}{\partial y} \mathbf{j}+\mathbf{k}\right)\right] d x d y
$$

In our case we get

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{2}\left(3 x^{2},-2 y x, 8\right) \cdot(-2,1,1) d x d y & =\int_{0}^{2} \int_{0}^{2}\left(-6 x^{2}-2 y x+8\right) d x d y \\
& =\int_{0}^{2}-2 x^{3}-y x^{2}+\left.8 x\right|_{x=0} ^{2} d y \\
& =\int_{0}^{2}-4 y d y=-\left.2 y^{2}\right|_{0} ^{2}=-8
\end{aligned}
$$

Example 2 Let S be the triangle with vertices $(1,0,0),(0,2,0)$, and ($0,1,1$), and let $\mathbf{F}=x y z(\mathbf{i}+\mathbf{j})$. Calculate the surface integral

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

if the triangle is oriented by the "downward" normal.
Solution. Since S lies in a plane (see the right hand part of the Figure), it is part of the graph of a linear function $z=a x+b y+c$.

Substituting the vertices of the triangle for (x, y, z), we get the equation

$$
0=a+c, \quad 0=2 b+c, \quad 1=b+c,
$$

which we can solve to find $b=-1, c=2, a=-2$, i.e., $z=-2 x-y+2$. We may take x and y as parameters; i.e.,

$$
x=u, \quad y=v, \quad z=-2 u-v+2,
$$

or $\boldsymbol{\Phi}(u, v)=(u, v,-2 u-v+2)$. The domain D of the parametrization is the triangle with vertices at $(1,0),(0,2)$, and $(0,1)$ in the (u, v) plane. For this parametrization,

$$
\mathbf{T}_{u} \times \mathbf{T}_{v}=(1,0,-2) \times(0,1,-1)=(2,1,1)
$$

Since the third component of this vector is positive, the orientation determined by $\boldsymbol{\Phi}$ is "upward", so we will have to multiply our find answer by -1 to get the surface integral with the downward orientation.

Now we have (with the minus sign reminding us that the orientation is wrong),

$$
\begin{aligned}
-\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D} x y z(\mathbf{i}+\mathbf{j}) \cdot(2 \mathbf{i}+\mathbf{j}+\mathbf{k}) d u d v \\
& =\iint_{D} 3 x y z d u d v=\iint_{D} 3 u v(-2 u-v+2) d u d v .
\end{aligned}
$$

To compute the double integral, we draw the integration domain D in the $u v$-plane, in the left hand part of the Figure.

By reduction to iterated integrals,

$$
\iint_{D} 3 u v(-2 u-v+2) d u d v=\int_{0}^{1} \int_{1-u}^{2-2 u}\left(-6 u^{2} v-3 u v^{2}+6 u v\right) d v d u
$$

Carrying out the v-integration, we get

$$
\begin{aligned}
\int_{0}^{1} & {\left.\left[-3 u^{2} v^{2}-u v^{3}+3 u v^{2}\right]\right|_{1-u} ^{2-2 u} d u } \\
& =\left.\int_{0}^{1} u v^{2}[-3 u-v+3]\right|_{1-u} ^{2(1-u)} d u \\
& =\int_{0}^{1}\left[4 u(1-u)^{2}(1-u)-u(1-u)^{2} 2(1-u)\right] d u
\end{aligned}
$$

Multiplying out and simplifying, this integral becomes

$$
\begin{aligned}
& 2 \int_{0}^{1} \quad u(1-u)^{3} d u \\
& \quad=2 \int_{0}^{1}\left(u-3 u^{2}+3 u^{3}-u^{4}\right) d u \\
& \quad=2\left(\frac{1}{2}-\frac{3}{3}+\frac{3}{4}-\frac{1}{5}\right)=\frac{1}{10}
\end{aligned}
$$

and so

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=-\frac{1}{10} .
$$

Note. This example is related to the scalar integral example in homework set 7 (exercise 2 in section 7.5), which asks you to evaluate

$$
\iint_{S} x y z d S
$$

where S is the same triangle with vertices $(1,0,0),(0,2,0)$ and $(0,1,1)$.. Perhaps you can make use of some of the calculations from that exercise and the formula $d S=\frac{d x d y}{\mathbf{n} \cdot \mathbf{k}}=\sqrt{6} d x d y$ obtained in the solution to that problem.

Example 3. The equations

$$
z=12, \quad x^{2}+y^{2} \leq 25
$$

describe a disk of radius 5 lying in the plane $z=12$. Suppose that \mathbf{r} is the position vector field

$$
\mathbf{r}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} .
$$

Compute

$$
\iint_{S} \mathbf{r} \cdot d \mathbf{S}
$$

Solution. Since the disk is parallel to the $x y$ plane, the outward unit normal is \mathbf{k}. Hence $\mathbf{n}(x, y, z)=\mathbf{k}$ and so $\mathbf{r} \cdot \mathbf{n}=z$. Thus,

$$
\iint_{S} \mathbf{r} \cdot d \mathbf{S}=\iint_{S} \mathbf{r} \cdot \mathbf{n} d S=\iint_{S} z d S=\iint_{D} 12 d x d y=300 \pi
$$

Alternatively we may solve this problem by using the formula for surface integrals over graphs:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(-\frac{\partial g}{\partial x} \mathbf{i}-\frac{\partial g}{\partial y} \mathbf{j}+\mathbf{k}\right) d x d y
$$

With $g(x, y)=12$ and D the disk $x^{2}+y^{2} \leq 25$, we get

$$
\iint_{S} \mathbf{r} \cdot d \mathbf{S}=\iint_{D}(x \cdot 0+y \cdot 0+12) d x d y=12(\text { area of } D)=300 \pi
$$

Example 4. Let S be the closed surface that consists of the hemisphere $x^{2}+y^{2}+z^{2}=$ $1, z \geq 0$, and its base $x^{2}+y^{2} \leq 1, z=0$. Let \mathbf{E} be the electric field defined by $\mathbf{E}(x, y, z)=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}$. Find the electric flux across S.

Solution. Write $S=H \cup D$ where H is the upper hemisphere and D is the disk. Hence

$$
\iint_{S} \mathbf{E} \cdot d \mathbf{S}=\iint_{H} \mathbf{E} \cdot d \mathbf{S}+\iint_{D} \mathbf{E} \cdot d \mathbf{S} .
$$

(i) Let $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be the unit normal \mathbf{n} pointing outward from H. Then

$$
\begin{aligned}
\iint_{H} \mathbf{E} \cdot d \mathbf{S} & =\iint_{H} \mathbf{E} \cdot \mathbf{n} d S=\iint_{H}(2 x, 2 y, 2 z) \cdot(x, y, z) d S \\
& =2 \iint_{H}\left(x^{2}+y^{2}+z^{2}\right) d S=2 \iint_{H} d S=4 \pi .
\end{aligned}
$$

(ii) The unit normal is $-\mathbf{k}$ and $z=0$ on D. Hence,

$$
\iint_{D} \mathbf{E} \cdot d \mathbf{S}=\iint_{D} \mathbf{E} \cdot \mathbf{n} d S=\iint_{D}(2 x, 2 y, 2 z) \cdot(0,0,-1) d S=0 .
$$

Therefore,

$$
\iint_{S} \mathbf{E} \cdot d \mathbf{S}=4 \pi
$$

