Review Example 2, Chapter 8.

(a) Let $\mathbf{F}=\left(x^{2}+y-4\right) \mathbf{i}+3 x y \mathbf{j}+\left(2 x z+z^{2}\right) \mathbf{k}$. Calculate the divergence and curl of \mathbf{F}.
(b) Find the flux of the curl of \mathbf{F} across the surface $x^{2}+y^{2}+z^{2}=16, z \geq 0$.
(c) Find the flux of \mathbf{F} across the surface of the unit cube $[0,1] \times[0,1] \times[0,1]$.

Solution.

(a) By a direct computation,

$$
\nabla \cdot \mathbf{F}=7 x+2 z, \quad \nabla \times \mathbf{F}=-2 z \mathbf{j}+(3 y-1) \mathbf{k}
$$

(b) From Gauss' theorem and the identity $\nabla \cdot(\nabla \times \mathbf{F})=0$, we can conclude that the answer is 0 .
(c) Applying Gauss' theorem once again, we get

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 7 x+2 z d x d y d z=\frac{9}{2}
$$

