Review Example 1, Chapter 8.

Let W be the region in the octant $x \geq 0, y \geq 0, z \geq 0$, bounded by the three planes $y=0, z=0, x=y$, and by the sphere $x^{2}+y^{2}+z^{2}=1$.
(a) Find the volume of W.
(b) Set up a triple integral giving the integral of a function $f(x, y, z)$ over this region using spherical coordinates.
(c) Calculate the surface integral

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where

$$
F(x, y, z)=\left(3 x-z^{4}\right) \mathbf{i}-\left(x^{2}-y\right) \mathbf{j}+\left(x y^{2}\right) \mathbf{k}
$$

and S is the boundary of the set W.

Solution. First we draw the following figure.

(a) The volume of the region W is $1 / 16$ th that of a unit sphere, so it is $[(4 / 3) \pi] / 16=\pi / 12$.
(b) The required integral is

$$
\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 4} \int_{\rho=0}^{1} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

by the change of variables formula.
(c) Notice that div $\mathbf{F}=4$, so that by the divergence theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{W} \operatorname{div} \mathbf{F} d x d y d z \\
& =\iiint_{W} 4 d x d y d z=4 \times \operatorname{vol}(W)=\pi / 3
\end{aligned}
$$

using part (a).

