
Mathematics 1c: Solutions, Midterm Examination
Due: Monday, May 3, at 10am

1. Do each of the following calculations.

(a) If a particle follows the curve

c(t) = et−1i− (t− 1)j + sin(πt)k

and flies off on a tangent at t = 1, where is it at t = 2?

Solution. First note that c(1) = i. We compute that c′(t) = et−1i−j+π cos(πt)k.
Therefore c′(1) = i− j− πk. Hence the position of the particle at time t = 2 is

i + (2− 1)(i− j− πk) = 2i− j− πk.

(b) Find the equation of the tangent plane to the surface x2−exy +z2 = 1 at the point
(1, 0, 1).

Solution. The tangent plane consists of vectors based at (1, 0, 1) that are perpen-
dicular to the gradient of f(x, y, z) = x2 − exy + z2. We compute that

∇f(x, y, z) = (2x− yexy,−xexy, 2z).

Evaluating at (1, 0, 1), we obtain

∇f(1, 0, 1) = (2,−1, 2).

Therefore, the tangent plane at (1, 0, 1) is defined by

(2,−1, 2) · (x− 1, y, z − 1) = 0,

namely by

z = −x+
y

2
+ 2.

(c) Let f(x, y, z) = 5 +xy− zx be the concentration of chemical X. Find the direction
at (1, 1, 1) in which X is decreasing the fastest. In which directions is it decreasing
at 30% of its maximum rate? Give your answer in terms of the angle made with
the direction of fastest decrease.

Solution. The concentration of X is increasing the fastest in the direction of the
gradient of f , and hence decreasing the fastest in the opposite of this direction.
We compute that

∇f(x, y, z) = (y − z, x,−x),

and hence that
∇f(1, 1, 1) = (0, 1,−1).
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Therefore the concentration of X is decreasing fastest in the direction

−∇f(1, 1, 1) = (0,−1, 1).

Let n be a unit vector, and let θ be the angle between n and −∇f(1, 1, 1). Then
the directional derivative of f in the direction n is given by ∇f(1, 1, 1) · n =
‖∇f(1, 1, 1)‖‖n‖ cos(π−θ). This is 30% of its most negative value when cos(π−θ) =
−0.3, which is equivalent to cos(θ) = 0.3. This means that θ = cos−1(0.3).

2. Answer each of the following questions.

(a) Let f(r, s) be a (smooth) function of r and s and, let r = x + 2y and s = x− 2y.
Define the function h by h(x, y) = f(x+ 2y, x− 2y). Calculate

∂2h

∂x∂y

in terms of the partial derivatives of f .

Solution. Let r(x, y) = x+ 2y and s(x, y) = x− 2y. Then we have that

∂r

∂x
= 1,

∂r

∂y
= 2,

∂s

∂x
= 1,

∂s

∂y
= −2.

Applying the chain rule to h(x, y) = f(r(x, y), s(x, y)), we find that

∂2h

∂x∂y
=

∂

∂x

(
∂h

∂y

)
=

∂

∂x

(
∂f

∂r

∂r

∂y
+
∂f

∂s

∂s

∂y

)
=

∂

∂x

(
2
∂f

∂r
− 2

∂f

∂s

)
= 2

∂

∂x

(
∂f

∂r

)
− 2

∂

∂x

(
∂f

∂s

)
= 2

(
∂2f

∂r2
∂r

∂x
+

∂2f

∂s∂r

∂s

∂x

)
− 2

(
∂2f

∂r∂s

∂r

∂x
+
∂2f

∂s2
∂s

∂x

)
= 2

(
∂2f

∂r2
+

∂2f

∂s∂r

)
− 2

(
∂2f

∂r∂s
+
∂2f

∂s2

)
.

Because f(r, s) is a smooth function, ∂2f/∂s∂r = ∂2f/∂r∂s. Thus

∂2h

∂x∂y
= 2

∂2f

∂r2
− 2

∂2f

∂s2
,

or, more precisely,

∂2h

∂x∂y
(x, y) = 2

∂2f

∂r2
(x+ 2y, x− 2y)− 2

∂2f

∂s2
(x+ 2y, x− 2y).
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(b) Let f(u, v, w) be a given (differentiable) real valued function of three variables and
let

g(x, y) = f(x2 + y2, 2xy, x2 − y2)

Writing gradients as column vectors, write the gradient of g as ∇g = M ·∇f where
M is a matrix function of x and y and the dot is matrix multiplication. Explicitly
determine this matrix M .

Solution. Let u = x2+y2, v = 2xy, and w = x2−y2. Then, as g(x, y) = f(u, v, w),
the chain rule gives that

∇g = ∇f ·


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∂w
∂x

∂w
∂y

 ,
where∇g and∇f are treated as row vectors. Transposing both sides of the equality,
we get ∇g = M · ∇f , where ∇g and ∇f are treated as column vectors, with

M =

[∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

]
=

[
2x 2y 2x
2y 2x −2y

]
.

3. Answer each of the following questions.

(a) Let a curve in space c(t) satisfy c′(t) = ∇T (c(t)) where T is the function T (x, y, z) =
x3 − zy3 and c(0) = (1, 1, 0). Show that c′(0) is perpendicular to the surface
x3 − zy3 = 1.

Solution. At any given point (x0, y0, z0), the gradient ∇T is perpendicular to the
level set of T containing T (x0, y0, z0). Taking c(0) = (1, 1, 0) for (x0, y0, z0), we get
T (1, 1, 0) = 1, so ∇T (c(0)) = c′(0) is perpendicular to the level set T (x, y, z) =
x3 − zy3 = 1.

(b) In the preceding question, even though we might not know c(1) explicitly, must
T (c(0)) ≤ T (c(1))?

Solution. Yes. By the Fundamental Theorem of Calculus, the difference T (c(1))−
T (c(0)) is equal to ∫ 1

0

d

dt
T (c(t))dt.

Applying the chain rule, we obtain d
dtT (c(t)) = ∇T (c(t) · c′(t), which by the

assumption in (a) is equal to c′(t) · c′(t) = ‖c′(t)‖2 and so is nonnegative ev-
erywhere. Thus the integral expression for T (c(1)) − T (c(0)) is nonnegative, so
T (c(0)) ≤ T (c(1)).

(c) Let the curve in space c(t) satisfy c′(t) = ∇f(c(t)) where f(x, y, z) = x2− xy+ z2

and satisfy c(0) = (1, 1, 1). Calculate the acceleration of the curve c(t) at t = 0.
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Solution. The acceleration of c(t) at t = 0 is the second derivative

d

dt
(c′(t))|t=0

By the hypothesis, we have
c′(t) = (∇f)(c(t))

and thus by the chain rule,

c′′(t) =
d

dt
((∇f)(c(t)))

= (D∇f)(c(t))c′(t),

so that

c′′(0) = (D∇f)(c(0))c′(0)

= (D∇f)(1, 1, 1)(∇f)(c(0))

= (D∇f)(1, 1, 1)(∇f)(1, 1, 1).

Now, the gradient of f can be computed as

∇f(x, y, z) =


∂f
∂x
∂f
∂y
∂f
∂z


=

2x− y
−x
2z

 ;

in particular, D∇f is the matrix whose columns are the partial derivatives of this
column vector:

(D∇f)(x, y, z) =

 2 −1 0
−1 0 0
0 0 2

 .

Evaluating at (1, 1, 1) and multiplying gives

c′′(0) =

 2 −1 0
−1 0 0
0 0 2

 1
−1
2


=

 3
−1
4

 .

(In Math 2a, you’ll learn how to solve such equations; one finds that

c(t) =

(
e(1+

√
2)t + e(1−

√
2)t

2
,
(1−

√
2)e(1+

√
2)t + (1 +

√
2)e(1−

√
2)t

2
, e2t

)
,

from which one can read off the acceleration by direct differentiation.)
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4. (a) Consider the function
f(x, y) = 2x2y − x2 − y2.

Find and classify the critical points of f as local maxima, minima, or saddles.

Solution. First observe that f , as a polynomial, is not only defined and continuous
on all of R3, but also C3 on all of R3. Thus, we can apply Theorem 3.5 to classify
the critical points of f on R3.

We compute that

∇f(x, y) =

(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
= (4xy − 2x, 2x2 − 2y)

= 2(2x(y − 1
2), x2 − y),

so that ∇f(x, y) = 0 if and only if 2x(y− 1
2) = 0 and x2−y = 0. Now, 2x(y− 1

2) = 0
if and only if x = 0 or y = 1

2 ; in the case that x = 0, x2−y = 0 if and only if y = 0,
and in the case that y = 1

2 , x2− y = 0 if and only if x = ± 1√
2
. Thus, ∇f(x, y) = 0

if and only if (x, y) = (0, 0) or (± 1√
2
, 12); since f is differentiable on all of R3, these

are all the critical points of f .

Now, the Hessian matrix of f is given by

Hf(x, y) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
4y − 2 4x

4x −2

)
,

so that

Hf(0, 0) =

(
−2 0
0 −2

)
and

Hf(± 1√
2
, 12) =

(
0 ±2

√
2

±2
√

2 0

)
.

On the one hand, Hf(0, 0) is manifestly negative definite, so that by Theorem 3.5,
f has a local maximum at (0, 0). On the other hand, Hf(± 1√

2
, 12) is symmetric,

and thus is diagonalizable with two (not necessarily distinct) real eigenvalues λ1
and λ2. Hence,

λ1λ2 = det
(
Hf(± 1√

2
, 12)
)

= det

(
0 ±2

√
2

±2
√

2 0

)
= −8 < 0,

so that Hf(± 1√
2
, 12) has one positive eigenvalue and one negative eigenvalue, i.e.

f has a saddle point at (± 1√
2
, 12).

Thus, the critical points of f are the local maximum (0, 0) and the saddle points
( 1√

2
, 12) and (− 1√

2
, 12).
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(b) Use the method of Lagrange multipliers to determine if the maximum of the func-
tion f in part (a) on the region x2 + y2 ≤ 1 is on the boundary circle x2 + y2 = 1.

Solution. Since f is continuous on R3, it is, in particular, continuous on {(x, y) ∈
R3 | x2 + y2 ≤ 1} = D ∪ ∂D, for D = {(x, y) ∈ R3 | x2 + y2 < 1}. Since D ∪ ∂D
is closed and bounded, it follows from Theorem 3.7 that f restricted to D ∪ ∂D
attains a global maximum and a global minimum.

On the one hand, by (a), since (0, 0), ( 1√
2
, 12) and (− 1√

2
, 12) all lie in D, the critical

points of f restricted to D are precisely (0, 0), ( 1√
2
, 12) and (− 1√

2
, 12).

On the other hand, ∂D = {(x, y) ∈ R3 | x2 + y2 = 1} = {(x, y) ∈ R3 | g(x, y) = 0},
where g(x, y) = x2 + y2 − 1, so that since ∇g(x, y) = 2(x, y) 6= 0 on ∂D, we can
apply the method of Lagrange multipliers (i.e. Theorem 3.8) to find the possible
local maxima and minima of f on ∂D. Now, let λ ∈ R. Then ∇f(x, y) = λ∇g(x, y)
if and only if 2(2x(y − 1

2), x2 − y) = 2λ(x, y), if and only if x(2y − λ− 1) = 0 and
x2 = (1 + λ)y. Thus, we must solve the following system of equations:

x(2y − λ− 1) = 0

x2 = (1 + λ)y

x2 + y2 = 1.

Now, by the first equation, there are two possible cases, namely, x = 0 or y = 1+λ
2 .

First, suppose that x = 0. Then by the third equation, y2 = 1, so that y = ±1,
and hence, by the second equation, λ = −1. Hence, we obtain the candidate points

(0,±1). Now, suppose that y = 1+λ
2 . Then, by the second equation, x2 = (1+λ)2

2 ,

so that x = ± |1+λ|√
2

, and hence, by the third equation,

1 = (1+λ)2

2 + (1+λ)2

4 = 3
4(1 + λ)2,

so that 1 + λ = ± 2√
3
. Hence, we obtain the candidate points (

√
2√
3
, 1√

3
), (
√
2√
3
,− 1√

3
),

(−
√
2√
3
, 1√

3
), and (−

√
2√
3
,− 1√

3
).

Thus, the possible global maxima and minima of f on D ∪ ∂D are (0, 0), ( 1√
2
, 12),

(0,±1), (
√
2√
3
, 1√

3
), (
√
2√
3
,− 1√

3
), (−

√
2√
3
, 1√

3
), and (−

√
2√
3
,− 1√

3
). Since

f(0, 0) = 0

f( 1√
2
, 12) = −1

2

f(0,±1) = −1

f(
√
2√
3
, 1√

3
) = 4

3
√
3
− 1

f(
√
2√
3
,− 1√

3
) = − 4

3
√
3
− 1

f(−
√
2√
3
, 1√

3
) = 4

3
√
3
− 1

f(−
√
2√
3
,− 1√

3
) = − 4

3
√
3
− 1,
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it follows that f attains a global maximum at (0, 0), which is not on the boundary
circle ∂D.

(c) Consider the function f(x, y) = a x2 + 2b xy + c y2 defined on the whole xy-plane.
Suppose that the eigenvalues of the matrix[

a b
b c

]
are both positive. Is the origin a local minimum of f? Must it be a global minimum
of f?

Solution. Yes and Yes.

We calculate the partial derivatives

∂f

∂x
= 2ax+ 2by

∂f

∂y
= 2bx+ 2cy.

These both vanish at the origin so the origin is indeed a critical point. Further,

∂2f

∂x2
= 2a

∂2f

∂y2
= 2c

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2b,

so the Hessian is twice the matrix given in the problem. If the eigenvalues are both
positive then the origin is a local minimum.

While the fact that the origin is a local minimum does not imply that it is a global
minimum, it turns out that in this case the origin is also a global minimum. If
both eigenvalues are positive then the diagonal derivatives must be positive. That
is, a > 0 and ac− b2 > 0 implying as well that c > 0. Now for fixed (x, y), we have
either

ax2 + 2bxy + cy2 > ax2 + 2
√
acxy + cy2 = (

√
ax+

√
cy)2

or
ax2 + 2bxy + cy2 > ax2 − 2

√
acxy + cy2 = (

√
ax−

√
cy)2

depending on whether the middle term is positive or negative. Either way we have
expressed f(x, y) as a square so it is nonnegative, and we know that f(0, 0) = 0.

5. (a) Let F(x, y) = f(x2 + y2)[−yi + xj] for a given function f of one variable. Find an
equation that g(t) should satisfy so that

c(t) = [cos g(t)]i + [sin g(t)]j

will be a flow line for F.

7



Solution. By definition, c is a flow line of F if F(c(t)) = c′(t). We calculate that

F(c(t)) = f
(

cos2(g(t)) + sin2(g(t))
)(
− sin(g(t))i + cos(g(t))j

)
= f(1)

(
− sin(g(t))i + cos(g(t))j

)
and

c′(t) =
d

dt
cos(g(t))i +

d

dt
sin(g(t))j

= g′(t)
(
− sin(g(t))i + cos(g(t))j

)
.

Thus the condition that c(t) is a flow line of F means that

f(1)
(
− sin(g(t))i + cos(g(t))j

)
= g′(t)

(
− sin(g(t))i + cos(g(t))j

)
.

Since − sin(g(t))i + cos(g(t))j is always a nonzero vector, we may divide through
by it to obtain f(1) = g′(t). Therefore we conclude that g(t) = f(1)t+C for some
constant C.

(b) Let F = (x2 + y−4)i+ 3xyj+ (2xz+ z2)k. Calculate the divergence and curl of F.

Solution. We compute that

divF =
∂

∂x
(x2 + y − 4) +

∂

∂y
3xy +

∂

∂z
(2xz + z2)

= (2x) + (3x) + (2x+ 2z)

= 7x+ 2z.

and that

curlF = (∂y(2xz + z2)− ∂z3xy)i + (∂z(x
2 + y − 4)− ∂x(2xz + z2))j

+ (∂x3xy − ∂y(x2 + y − 4))k

= (0− 0)i + (0− 2z)j + (3y − 1)k

= −2zj + (3y − 1)k.
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