Mathematics 1c: Solutions, Midterm Examination
Due: Monday, May 3, at 10am

1. Do each of the following calculations.

(a)

If a particle follows the curve
c(t) = e i~ (t —1)j +sin(nt)k
and flies off on a tangent at ¢ = 1, where is it at t = 27

Solution. First note that c(1) = i. We compute that c/(t) = e~ 1i—j+m cos(nt)k.
Therefore ¢/(1) =i — j — wk. Hence the position of the particle at time ¢t = 2 is

i+(2-1)(i-j—7k)=2i—j— k. O

Find the equation of the tangent plane to the surface z? —e®¥ + 22 = 1 at the point
(1,0,1).

Solution. The tangent plane consists of vectors based at (1,0, 1) that are perpen-
dicular to the gradient of f(z,y, z) = 2% — ¥ + 22. We compute that

Vi(x,y,z) =2z —ye™, —xe™, 2z2).
Evaluating at (1,0,1), we obtain
Vf(1,0,1) =(2,-1,2).
Therefore, the tangent plane at (1,0,1) is defined by
(2,-1,2)- (x —1,y,2— 1) =0,

namely by
Y

z2=—-x+ 5 + 2. O
Let f(x,y,z) = 5+ xy — zx be the concentration of chemical X. Find the direction
at (1,1,1) in which X is decreasing the fastest. In which directions is it decreasing
at 30% of its maximum rate? Give your answer in terms of the angle made with

the direction of fastest decrease.

Solution. The concentration of X is increasing the fastest in the direction of the
gradient of f, and hence decreasing the fastest in the opposite of this direction.
We compute that

Vf(x,y, Z) = (y -z, —LU),

and hence that
Vf(1,1,1) =(0,1,-1).



Therefore the concentration of X is decreasing fastest in the direction

-Vf(1,1,1)=(0,—1,1).

Let n be a unit vector, and let 6 be the angle between n and —V f(1,1,1). Then

the directional derivative of f in the direction n is given by Vf(1,1,1)

n =

|V f(1,1,1)]||n| cos(m—@). This is 30% of its most negative value when cos(m—6) =

—0.3, which is equivalent to cos(f) = 0.3. This means that § = cos~1(0.3).

O]

2. Answer each of the following questions.

(a) Let f(r,s) be a (smooth) function of  and s and, let r = z + 2y and s = x — 2y.
Define the function h by h(z,y) = f(x + 2y, z — 2y). Calculate

0°h
0xdy

in terms of the partial derivatives of f.

Solution. Let r(z,y) = x 4+ 2y and s(x,y) = © — 2y. Then we have that

or

%_7

or

9y =

O0s

i

Js

8—y——2.

Applying the chain rule to h(x,y) = f(r(z,y), s(z,y)), we find that

0%h
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Because f(r, s) is a smooth function, 82 f/0s0r = 0% f/Ords. Thus

or, more precisely,
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(b)

Let f(u,v,w) be a given (differentiable) real valued function of three variables and
let

gla,y) = f(2® +y°, 22y, 2 — y?)
Writing gradients as column vectors, write the gradient of g as Vg = M -V f where

M is a matrix function of x and y and the dot is matrix multiplication. Explicitly
determine this matrix M.

Solution. Let u = 22+%2, v = 2zy, and w = 22 —y?. Then, as g(z,y) = f(u,v,w),
the chain rule gives that

ou  OJu
i
ow  dw
or Oy

where Vg and V f are treated as row vectors. Transposing both sides of the equality,
we get Vg = M -V f, where Vg and V f are treated as column vectors, with

_[%%?;}_[2@* 2y 2[6:| -
8—; v 8—15 2y 2x —2y|°

3. Answer each of the following questions.

(a)

Let a curve in space c(t) satisfy ¢/(t) = VT'(c(t)) where T is the function T'(z,y, z) =
23 — 2% and ¢(0) = (1,1,0). Show that ¢/(0) is perpendicular to the surface
x3 — zy3 = 1.

Solution. At any given point (xo, Yo, 20), the gradient VT is perpendicular to the
level set of T' containing T'(xo, Yo, 20). Taking c¢(0) = (1, 1,0) for (xo, Yo, 20), we get
T(1,1,0) = 1, so VT'(c(0)) = ¢/(0) is perpendicular to the level set T'(z,y,z) =
3 — 2 = 1. O

In the preceding question, even though we might not know c(1) explicitly, must

T(c(0)) < T(e(1))?

Solution. Yes. By the Fundamental Theorem of Calculus, the difference 7'(c(1))—

T'(c(0)) is equal to
td
/0 %T(c(t))dt.

Applying the chain rule, we obtain dtT( c(t)) = VT(c(t) - ¢/(t), which by the
assumption in (a) is equal to c/(t) - ¢/(t) = ||c/(t)||> and so is nonnegative ev-
erywhere. Thus the integral expression for T'(c(1)) — T(c(0)) is nonnegative, so
T(c(0)) < T(c(1))- [

Let the curve in space c(t) satisfy ¢/(t) = Vf(c(t)) where f(z,y,2) = 2% — 2y + 2>
and satisfy ¢(0) = (1,1, 1). Calculate the acceleration of the curve c(t) at ¢t = 0.



Solution. The acceleration of ¢(t) at ¢ = 0 is the second derivative

a
o)

By the hypothesis, we have
c'(t) = (Vf)(e(t))
and thus by the chain rule,
d

c"(t) = 2 ((Vf)(e(®)

= (DVf)(c(t))c' (1),
so that

c"(0) = (DV £)(c(0))c'(0)

= (DV[)(1,1,1)(V[)(c(0))
= (DV)(L, L, 1)(Vf)(1,1,1).
Now, the gradient of f can be computed as

of
Vi(z,y,2) = %*5

of

0z

20 —y

= —x ;
2z

in particular, DV f is the matrix whose columns are the partial derivatives of this

column vector:
2 -1 0
0 0o 2

Evaluating at (1,1,1) and multiplying gives

2 -1 0\ /1
d0)=[-1 0 o] |-1
0o o0 2/ \2

3

= -1

4

(In Math 2a, you'll learn how to solve such equations; one finds that

o) = [T AT (1= VR 4 (14 VY,
- 2 ) 2 ) )
from which one can read off the acceleration by direct differentiation.) O



4.

(a) Consider the function

f(z,y) =207y — 2 — %

Find and classify the critical points of f as local maxima, minima, or saddles.

Solution. First observe that f, as a polynomial, is not only defined and continuous
on all of R3, but also C3 on all of R3. Thus, we can apply Theorem 3.5 to classify
the critical points of f on R3.

We compute that

Vi) = (G G

= (day — 2z, 22% — 2y)
=2(2z(y — 3),2% — y),

so that Vf(x,y) = 0 if and only if 2x(y—%) =0and 22—y = 0. Now, 2x(y—%) =0
ifand only ifx =0 or y = %; in the case that z = 0, 22 —y = 0 if and only if y = 0,
and in the case that y = %, 2?2 —y =0if and only if z = i%. Thus, Vf(z,y) =0
if and only if (x,y) = (0,0) or (:l:%, 1); since f is differentiable on all of R3, these

are all the critical points of f.
Now, the Hessian matrix of f is given by

2f  92f

3.2 9y —2 4z

Hf(z,y) = (g%; ")a%%y) = ( )
Oydzx  Oy? 4z —2

HF(0.0) = (‘02 _02>

0 +21/2
Hf(i\}i’é):<i2\/§ 0 )

On the one hand, H f(0,0) is manifestly negative definite, so that by Theorem 3.5,
f has a local maximum at (0,0). On the other hand, Hf(:l:%, %) is symmetric,
and thus is diagonalizable with two (not necessarily distinct) real eigenvalues A;

and Ao. Hence,

so that

and

0 +21/2
Ay\gzd(ﬁ‘g(Hf(i\}Q,%)):det<i2\/§ ) >:—8<0,

so that H f (i%, %) has one positive eigenvalue and one negative eigenvalue, i.e.

f has a saddle point at (:t%, %)
Thus, the critical points of f are the local maximum (0,0) and the saddle points

(%7%) and (_%7%) -



(b) Use the method of Lagrange multipliers to determine if the mazimum of the func-
tion f in part (a) on the region z2 + y? < 1 is on the boundary circle 2 4 3% = 1.

Solution. Since f is continuous on R3, it is, in particular, continuous on {(x,y) €
R3 |22+ 9y? <1} =DUID, for D = {(x,y) € R3 | 22 + y? < 1}. Since DU D
is closed and bounded, it follows from Theorem 3.7 that f restricted to D U 0D
attains a global maximum and a global minimum.

On the one hand, by (a), since (0,0), (%, 3) and (—\%, 3) all lie in D, the critical

points of f restricted to D are precisely (0,0), (%, %) and (—%, %)

On the other hand, 0D = {(x,y) € R | 22 +4? = 1} = {(z,y) € R? | g(z,y) = 0},
where g(x,y) = 2% + y? — 1, so that since Vg(z,y) = 2(z,y) # 0 on dD, we can
apply the method of Lagrange multipliers (i.e. Theorem 3.8) to find the possible
local maxima and minima of f on D. Now, let A € R. Then V f(x,y) = AVg(z,y)
if and only if 2(2z(y — 3),2% —y) = 2X\(=,y), if and only if z(2y — A — 1) = 0 and
22 = (1 4+ A)y. Thus, we must solve the following system of equations:

z2y—A—1)=0

22=(14+ Ny
2 + y2 = 1.
Now, by the first equation, there are two possible cases, namely, x = 0 or y = %
First, suppose that = 0. Then by the third equation, y?> = 1, so that y = +1,
and hence, by the second equation, A = —1. Hence, we obtain the candidate points
2
(0,£1). Now, suppose that y = # Then, by the second equation, z? = @,

|1+

so that x = + 75 and hence, by the third equation,

1= LT VR 31 4 )2

so that 1+ X = :t%. Hence, we obtain the candidate points (%, %), (%, —%),
(-G ) md (-~ )
Thus, the possible global maxima and minima of f on D U JD are (0,0), ( %, 3,

(0,41), (M2, L), (X2, —L) (=¥2 L) and (—¥2,—L). Since

V3 Ve W TR TV B V3 V3
1(0,0)=0
H(59) =3
f(0,4£1) =1
105 ) = 55— 1
F( R -F) = —5% - 1
f(—%05) =505~ 1
fR 0 =55~ L,



it follows that f attains a global maximum at (0, 0), which is not on the boundary
circle 0D. 0

Consider the function f(z,y) = ax? + 2bxy + cy? defined on the whole xy-plane.
Suppose that the eigenvalues of the matrix

a b
b ¢
are both positive. Is the origin a local minimum of f? Must it be a global minimum

of 7

Solution. Yes and Yes.
We calculate the partial derivatives

a—f = 2ax + 2by
ox
8—f = 2bx + 2cy.
Ay
These both vanish at the origin so the origin is indeed a critical point. Further,

0% f
9g2 2
0% f
[
2 2

o°f _ o°f _ 9,

Oxdy  Oyox

so the Hessian is twice the matrix given in the problem. If the eigenvalues are both
positive then the origin is a local minimum.

While the fact that the origin is a local minimum does not imply that it is a global
minimum, it turns out that in this case the origin is also a global minimum. If
both eigenvalues are positive then the diagonal derivatives must be positive. That
is, a > 0 and ac —b? > 0 implying as well that ¢ > 0. Now for fixed (z,y), we have
either

ax® + 2bzy + cy? > ax® 4 2v/acxy + ¢y = (Vaz + ey)?

or
az® + 2bxy + cy® > ax® — 2v/acxy + cy® = (Var — ey)?

depending on whether the middle term is positive or negative. Either way we have
expressed f(z,y) as a square so it is nonnegative, and we know that f(0,0) =0. O

Let F(x,y) = f(2? + y?)[~yi + zj] for a given function f of one variable. Find an
equation that g(t) should satisfy so that

c(t) = [cos g(#)]i + [sin g(£)]j

will be a flow line for F.



Solution. By definition, c is a flow line of F if F(c(t)) = ¢/(t). We calculate that

F(c(t)) = f(cos®(g(t)) + sin®(g(t))) ( — sin(g(t))i+ cos(g(t))j)
= f(1)(— sin(g(t))i + cos(g(t))J)
and

(1) = 4 cos(g(t)i + 4 sin(g (1)
(

dt
)i+ cos(g(t))j)-

=g'(t)( —sin(g
Thus the condition that c(t) is a flow line of F means that

F@)( = sin(g(t))i + cos(g(t))j) = ¢'(t)( — sin(g(t))i + cos(g(t))j).

Since —sin(g(t))i + cos(g(t))j is always a nonzero vector, we may divide through
by it to obtain f(1) = ¢’(t). Therefore we conclude that g(t) = f(1)t + C for some
constant C. Ul

Let F = (22 4y —4)i+3zyj+ (2r2 + 2?)k. Calculate the divergence and curl of F.

Solution. We compute that
divF = ;x(xQ +y—4)+ ;;‘Sm:y + aaz(sz + 2%)
= (2z) 4+ (3z) + (22 + 22)
=Tx + 2z.

and that

curl F = (9,(2x2 + 2%) — 9,3zy)i + (9. (2* +y — 4) — 0. (2x2 + 22))j
+ (0237y — Oy (z* +y — 4))k
=0-0)i+(0—-22)j+ By -1k
=—-22j+ 3y — Dk. O



