Mathematics 1c: Solutions, Midterm Examination
 Due: Monday, May 3, at 10am

1. Do each of the following calculations.
(a) If a particle follows the curve

$$
\mathbf{c}(t)=e^{t-1} \mathbf{i}-(t-1) \mathbf{j}+\sin (\pi t) \mathbf{k}
$$

and flies off on a tangent at $t=1$, where is it at $t=2$?
Solution. First note that $\mathbf{c}(1)=\mathbf{i}$. We compute that $\mathbf{c}^{\prime}(t)=e^{t-1} \mathbf{i}-\mathbf{j}+\pi \cos (\pi t) \mathbf{k}$. Therefore $\mathbf{c}^{\prime}(1)=\mathbf{i}-\mathbf{j}-\pi \mathbf{k}$. Hence the position of the particle at time $t=2$ is

$$
\mathbf{i}+(2-1)(\mathbf{i}-\mathbf{j}-\pi \mathbf{k})=2 \mathbf{i}-\mathbf{j}-\pi \mathbf{k} .
$$

(b) Find the equation of the tangent plane to the surface $x^{2}-e^{x y}+z^{2}=1$ at the point $(1,0,1)$.

Solution. The tangent plane consists of vectors based at $(1,0,1)$ that are perpendicular to the gradient of $f(x, y, z)=x^{2}-e^{x y}+z^{2}$. We compute that

$$
\nabla f(x, y, z)=\left(2 x-y e^{x y},-x e^{x y}, 2 z\right)
$$

Evaluating at (1, 0, 1), we obtain

$$
\nabla f(1,0,1)=(2,-1,2) .
$$

Therefore, the tangent plane at $(1,0,1)$ is defined by

$$
(2,-1,2) \cdot(x-1, y, z-1)=0,
$$

namely by

$$
z=-x+\frac{y}{2}+2
$$

(c) Let $f(x, y, z)=5+x y-z x$ be the concentration of chemical X. Find the direction at $(1,1,1)$ in which X is decreasing the fastest. In which directions is it decreasing at 30% of its maximum rate? Give your answer in terms of the angle made with the direction of fastest decrease.

Solution. The concentration of X is increasing the fastest in the direction of the gradient of f, and hence decreasing the fastest in the opposite of this direction. We compute that

$$
\nabla f(x, y, z)=(y-z, x,-x)
$$

and hence that

$$
\nabla f(1,1,1)=(0,1,-1)
$$

Therefore the concentration of X is decreasing fastest in the direction

$$
-\nabla f(1,1,1)=(0,-1,1) .
$$

Let \mathbf{n} be a unit vector, and let θ be the angle between \mathbf{n} and $-\nabla f(1,1,1)$. Then the directional derivative of f in the direction \mathbf{n} is given by $\nabla f(1,1,1) \cdot \mathbf{n}=$ $\|\nabla f(1,1,1)\|\|\mathbf{n}\| \cos (\pi-\theta)$. This is 30% of its most negative value when $\cos (\pi-\theta)=$ -0.3 , which is equivalent to $\cos (\theta)=0.3$. This means that $\theta=\cos ^{-1}(0.3)$.
2. Answer each of the following questions.
(a) Let $f(r, s)$ be a (smooth) function of r and s and, let $r=x+2 y$ and $s=x-2 y$. Define the function h by $h(x, y)=f(x+2 y, x-2 y)$. Calculate

$$
\frac{\partial^{2} h}{\partial x \partial y}
$$

in terms of the partial derivatives of f.
Solution. Let $r(x, y)=x+2 y$ and $s(x, y)=x-2 y$. Then we have that

$$
\frac{\partial r}{\partial x}=1, \quad \frac{\partial r}{\partial y}=2, \quad \frac{\partial s}{\partial x}=1, \quad \frac{\partial s}{\partial y}=-2
$$

Applying the chain rule to $h(x, y)=f(r(x, y), s(x, y))$, we find that

$$
\begin{aligned}
\frac{\partial^{2} h}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial f}{\partial s} \frac{\partial s}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(2 \frac{\partial f}{\partial r}-2 \frac{\partial f}{\partial s}\right) \\
& =2 \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial r}\right)-2 \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial s}\right) \\
& =2\left(\frac{\partial^{2} f}{\partial r^{2}} \frac{\partial r}{\partial x}+\frac{\partial^{2} f}{\partial s \partial r} \frac{\partial s}{\partial x}\right)-2\left(\frac{\partial^{2} f}{\partial r \partial s} \frac{\partial r}{\partial x}+\frac{\partial^{2} f}{\partial s^{2}} \frac{\partial s}{\partial x}\right) \\
& =2\left(\frac{\partial^{2} f}{\partial r^{2}}+\frac{\partial^{2} f}{\partial s \partial r}\right)-2\left(\frac{\partial^{2} f}{\partial r \partial s}+\frac{\partial^{2} f}{\partial s^{2}}\right) .
\end{aligned}
$$

Because $f(r, s)$ is a smooth function, $\partial^{2} f / \partial s \partial r=\partial^{2} f / \partial r \partial s$. Thus

$$
\frac{\partial^{2} h}{\partial x \partial y}=2 \frac{\partial^{2} f}{\partial r^{2}}-2 \frac{\partial^{2} f}{\partial s^{2}}
$$

or, more precisely,

$$
\frac{\partial^{2} h}{\partial x \partial y}(x, y)=2 \frac{\partial^{2} f}{\partial r^{2}}(x+2 y, x-2 y)-2 \frac{\partial^{2} f}{\partial s^{2}}(x+2 y, x-2 y) .
$$

(b) Let $f(u, v, w)$ be a given (differentiable) real valued function of three variables and let

$$
g(x, y)=f\left(x^{2}+y^{2}, 2 x y, x^{2}-y^{2}\right)
$$

Writing gradients as column vectors, write the gradient of g as $\nabla g=M \cdot \nabla f$ where M is a matrix function of x and y and the dot is matrix multiplication. Explicitly determine this matrix M.

Solution. Let $u=x^{2}+y^{2}, v=2 x y$, and $w=x^{2}-y^{2}$. Then, as $g(x, y)=f(u, v, w)$, the chain rule gives that

$$
\nabla g=\nabla f \cdot\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}
\end{array}\right],
$$

where ∇g and ∇f are treated as row vectors. Transposing both sides of the equality, we get $\nabla g=M \cdot \nabla f$, where ∇g and ∇f are treated as column vectors, with

$$
M=\left[\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 2 y & 2 x \\
2 y & 2 x & -2 y
\end{array}\right] .
$$

3. Answer each of the following questions.
(a) Let a curve in space $\mathbf{c}(t)$ satisfy $\mathbf{c}^{\prime}(t)=\nabla T(\mathbf{c}(t))$ where T is the function $T(x, y, z)=$ $x^{3}-z y^{3}$ and $\mathbf{c}(0)=(1,1,0)$. Show that $\mathbf{c}^{\prime}(0)$ is perpendicular to the surface $x^{3}-z y^{3}=1$.

Solution. At any given point $\left(x_{0}, y_{0}, z_{0}\right)$, the gradient ∇T is perpendicular to the level set of T containing $T\left(x_{0}, y_{0}, z_{0}\right)$. Taking $\mathbf{c}(0)=(1,1,0)$ for $\left(x_{0}, y_{0}, z_{0}\right)$, we get $T(1,1,0)=1$, so $\nabla T(\mathbf{c}(0))=\mathbf{c}^{\prime}(0)$ is perpendicular to the level set $T(x, y, z)=$ $x^{3}-z y^{3}=1$.
(b) In the preceding question, even though we might not know $\mathbf{c}(1)$ explicitly, must $T(c(0)) \leq T(c(1))$?

Solution. Yes. By the Fundamental Theorem of Calculus, the difference $T(\mathbf{c}(1))-$ $T(\mathbf{c}(0))$ is equal to

$$
\int_{0}^{1} \frac{d}{d t} T(c(t)) d t
$$

Applying the chain rule, we obtain $\frac{d}{d t} T(\mathbf{c}(t))=\nabla T\left(\mathbf{c}(t) \cdot \mathbf{c}^{\prime}(t)\right.$, which by the assumption in (a) is equal to $\mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime}(t)=\left\|\mathbf{c}^{\prime}(t)\right\|^{2}$ and so is nonnegative everywhere. Thus the integral expression for $T(\mathbf{c}(1))-T(\mathbf{c}(0))$ is nonnegative, so $T(\mathbf{c}(0)) \leq T(c(1))$.
(c) Let the curve in space $\mathbf{c}(t)$ satisfy $\mathbf{c}^{\prime}(t)=\nabla f(\mathbf{c}(t))$ where $f(x, y, z)=x^{2}-x y+z^{2}$ and satisfy $\mathbf{c}(0)=(1,1,1)$. Calculate the acceleration of the curve $\mathbf{c}(t)$ at $t=0$.

Solution. The acceleration of $\mathbf{c}(t)$ at $t=0$ is the second derivative

$$
\left.\frac{d}{d t}\left(\mathbf{c}^{\prime}(t)\right)\right|_{t=0}
$$

By the hypothesis, we have

$$
\mathbf{c}^{\prime}(t)=(\nabla f)(\mathbf{c}(t))
$$

and thus by the chain rule,

$$
\begin{aligned}
\mathbf{c}^{\prime \prime}(t) & =\frac{d}{d t}((\nabla f)(\mathbf{c}(t))) \\
& =(D \nabla f)(\mathbf{c}(t)) \mathbf{c}^{\prime}(t),
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathbf{c}^{\prime \prime}(0) & =(D \nabla f)(\mathbf{c}(0)) \mathbf{c}^{\prime}(0) \\
& =(D \nabla f)(1,1,1)(\nabla f)(\mathbf{c}(0)) \\
& =(D \nabla f)(1,1,1)(\nabla f)(1,1,1)
\end{aligned}
$$

Now, the gradient of f can be computed as

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right) \\
& =\left(\begin{array}{c}
2 x-y \\
-x \\
2 z
\end{array}\right) ;
\end{aligned}
$$

in particular, $D \nabla f$ is the matrix whose columns are the partial derivatives of this column vector:

$$
(D \nabla f)(x, y, z)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Evaluating at $(1,1,1)$ and multiplying gives

$$
\begin{aligned}
\mathbf{c}^{\prime \prime}(0) & =\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \\
& =\left(\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right) .
\end{aligned}
$$

(In Math 2a, you'll learn how to solve such equations; one finds that

$$
\mathbf{c}(t)=\left(\frac{e^{(1+\sqrt{2}) t}+e^{(1-\sqrt{2}) t}}{2}, \frac{(1-\sqrt{2}) e^{(1+\sqrt{2}) t}+(1+\sqrt{2}) e^{(1-\sqrt{2}) t}}{2}, e^{2 t}\right)
$$

from which one can read off the acceleration by direct differentiation.)
4. (a) Consider the function

$$
f(x, y)=2 x^{2} y-x^{2}-y^{2}
$$

Find and classify the critical points of f as local maxima, minima, or saddles.
Solution. First observe that f, as a polynomial, is not only defined and continuous on all of \mathbb{R}^{3}, but also C^{3} on all of \mathbb{R}^{3}. Thus, we can apply Theorem 3.5 to classify the critical points of f on \mathbb{R}^{3}.
We compute that

$$
\begin{aligned}
\nabla f(x, y) & =\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right) \\
& =\left(4 x y-2 x, 2 x^{2}-2 y\right) \\
& =2\left(2 x\left(y-\frac{1}{2}\right), x^{2}-y\right)
\end{aligned}
$$

so that $\nabla f(x, y)=0$ if and only if $2 x\left(y-\frac{1}{2}\right)=0$ and $x^{2}-y=0$. Now, $2 x\left(y-\frac{1}{2}\right)=0$ if and only if $x=0$ or $y=\frac{1}{2}$; in the case that $x=0, x^{2}-y=0$ if and only if $y=0$, and in the case that $y=\frac{1}{2}, x^{2}-y=0$ if and only if $x= \pm \frac{1}{\sqrt{2}}$. Thus, $\nabla f(x, y)=0$ if and only if $(x, y)=(0,0)$ or $\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$; since f is differentiable on all of \mathbb{R}^{3}, these are all the critical points of f.
Now, the Hessian matrix of f is given by

$$
H f(x, y)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)=\left(\begin{array}{cc}
4 y-2 & 4 x \\
4 x & -2
\end{array}\right)
$$

so that

$$
H f(0,0)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right)
$$

and

$$
H f\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)=\left(\begin{array}{cc}
0 & \pm 2 \sqrt{2} \\
\pm 2 \sqrt{2} & 0
\end{array}\right)
$$

On the one hand, $\operatorname{Hf}(0,0)$ is manifestly negative definite, so that by Theorem 3.5, f has a local maximum at $(0,0)$. On the other hand, $H f\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ is symmetric, and thus is diagonalizable with two (not necessarily distinct) real eigenvalues λ_{1} and λ_{2}. Hence,

$$
\lambda_{1} \lambda_{2}=\operatorname{det}\left(H f\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)\right)=\operatorname{det}\left(\begin{array}{cc}
0 & \pm 2 \sqrt{2} \\
\pm 2 \sqrt{2} & 0
\end{array}\right)=-8<0
$$

so that $\operatorname{Hf}\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ has one positive eigenvalue and one negative eigenvalue, i.e. f has a saddle point at $\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.
Thus, the critical points of f are the local maximum $(0,0)$ and the saddle points $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.
(b) Use the method of Lagrange multipliers to determine if the maximum of the function f in part (a) on the region $x^{2}+y^{2} \leq 1$ is on the boundary circle $x^{2}+y^{2}=1$.

Solution. Since f is continuous on \mathbb{R}^{3}, it is, in particular, continuous on $\{(x, y) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2} \leq 1\right\}=D \cup \partial D$, for $D=\left\{(x, y) \in \mathbb{R}^{3} \mid x^{2}+y^{2}<1\right\}$. Since $D \cup \partial D$ is closed and bounded, it follows from Theorem 3.7 that f restricted to $D \cup \partial D$ attains a global maximum and a global minimum.
On the one hand, by (a), since $(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ all lie in D, the critical points of f restricted to D are precisely $(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.
On the other hand, $\partial D=\left\{(x, y) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}=\left\{(x, y) \in \mathbb{R}^{3} \mid g(x, y)=0\right\}$, where $g(x, y)=x^{2}+y^{2}-1$, so that since $\nabla g(x, y)=2(x, y) \neq 0$ on ∂D, we can apply the method of Lagrange multipliers (i.e. Theorem 3.8) to find the possible local maxima and minima of f on ∂D. Now, let $\lambda \in \mathbb{R}$. Then $\nabla f(x, y)=\lambda \nabla g(x, y)$ if and only if $2\left(2 x\left(y-\frac{1}{2}\right), x^{2}-y\right)=2 \lambda(x, y)$, if and only if $x(2 y-\lambda-1)=0$ and $x^{2}=(1+\lambda) y$. Thus, we must solve the following system of equations:

$$
\begin{aligned}
x(2 y-\lambda-1) & =0 \\
x^{2} & =(1+\lambda) y \\
x^{2}+y^{2} & =1 .
\end{aligned}
$$

Now, by the first equation, there are two possible cases, namely, $x=0$ or $y=\frac{1+\lambda}{2}$. First, suppose that $x=0$. Then by the third equation, $y^{2}=1$, so that $y= \pm 1$, and hence, by the second equation, $\lambda=-1$. Hence, we obtain the candidate points $(0, \pm 1)$. Now, suppose that $y=\frac{1+\lambda}{2}$. Then, by the second equation, $x^{2}=\frac{(1+\lambda)^{2}}{2}$, so that $x= \pm \frac{|1+\lambda|}{\sqrt{2}}$, and hence, by the third equation,

$$
1=\frac{(1+\lambda)^{2}}{2}+\frac{(1+\lambda)^{2}}{4}=\frac{3}{4}(1+\lambda)^{2},
$$

so that $1+\lambda= \pm \frac{2}{\sqrt{3}}$. Hence, we obtain the candidate points $\left(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$, $\left(-\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, and $\left(-\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$.
Thus, the possible global maxima and minima of f on $D \cup \partial D$ are $(0,0),\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$, $(0, \pm 1),\left(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right),\left(-\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, and $\left(-\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$. Since

$$
\begin{aligned}
f(0,0) & =0 \\
f\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right) & =-\frac{1}{2} \\
f(0, \pm 1) & =-1 \\
f\left(\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) & =\frac{4}{3 \sqrt{3}}-1 \\
f\left(\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) & =-\frac{4}{3 \sqrt{3}}-1 \\
f\left(-\frac{\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) & =\frac{4}{3 \sqrt{3}}-1 \\
f\left(-\frac{\sqrt{2}}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) & =-\frac{4}{3 \sqrt{3}}-1,
\end{aligned}
$$

it follows that f attains a global maximum at $(0,0)$, which is not on the boundary circle ∂D.
(c) Consider the function $f(x, y)=a x^{2}+2 b x y+c y^{2}$ defined on the whole $x y$-plane. Suppose that the eigenvalues of the matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

are both positive. Is the origin a local minimum of f ? Must it be a global minimum of f ?

Solution. Yes and Yes.
We calculate the partial derivatives

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 a x+2 b y \\
& \frac{\partial f}{\partial y}=2 b x+2 c y
\end{aligned}
$$

These both vanish at the origin so the origin is indeed a critical point. Further,

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =2 a \\
\frac{\partial^{2} f}{\partial y^{2}} & =2 c \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial^{2} f}{\partial y \partial x}=2 b
\end{aligned}
$$

so the Hessian is twice the matrix given in the problem. If the eigenvalues are both positive then the origin is a local minimum.
While the fact that the origin is a local minimum does not imply that it is a global minimum, it turns out that in this case the origin is also a global minimum. If both eigenvalues are positive then the diagonal derivatives must be positive. That is, $a>0$ and $a c-b^{2}>0$ implying as well that $c>0$. Now for fixed (x, y), we have either

$$
a x^{2}+2 b x y+c y^{2}>a x^{2}+2 \sqrt{a c} x y+c y^{2}=(\sqrt{a} x+\sqrt{c} y)^{2}
$$

or

$$
a x^{2}+2 b x y+c y^{2}>a x^{2}-2 \sqrt{a c} x y+c y^{2}=(\sqrt{a} x-\sqrt{c} y)^{2}
$$

depending on whether the middle term is positive or negative. Either way we have expressed $f(x, y)$ as a square so it is nonnegative, and we know that $f(0,0)=0$.
5. (a) Let $\mathbf{F}(x, y)=f\left(x^{2}+y^{2}\right)[-y \mathbf{i}+x \mathbf{j}]$ for a given function f of one variable. Find an equation that $g(t)$ should satisfy so that

$$
\mathbf{c}(t)=[\cos g(t)] \mathbf{i}+[\sin g(t)] \mathbf{j}
$$

will be a flow line for \mathbf{F}.

Solution. By definition, \mathbf{c} is a flow line of \mathbf{F} if $\mathbf{F}(\mathbf{c}(t))=\mathbf{c}^{\prime}(t)$. We calculate that

$$
\begin{aligned}
\mathbf{F}(\mathbf{c}(t)) & =f\left(\cos ^{2}(g(t))+\sin ^{2}(g(t))\right)(-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j}) \\
& =f(1)(-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j})
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{c}^{\prime}(t) & =\frac{d}{d t} \cos (g(t)) \mathbf{i}+\frac{d}{d t} \sin (g(t)) \mathbf{j} \\
& =g^{\prime}(t)(-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j})
\end{aligned}
$$

Thus the condition that $\mathbf{c}(t)$ is a flow line of \mathbf{F} means that

$$
f(1)(-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j})=g^{\prime}(t)(-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j}) .
$$

Since $-\sin (g(t)) \mathbf{i}+\cos (g(t)) \mathbf{j}$ is always a nonzero vector, we may divide through by it to obtain $f(1)=g^{\prime}(t)$. Therefore we conclude that $g(t)=f(1) t+C$ for some constant C.
(b) Let $\mathbf{F}=\left(x^{2}+y-4\right) \mathbf{i}+3 x y \mathbf{j}+\left(2 x z+z^{2}\right) \mathbf{k}$. Calculate the divergence and curl of \mathbf{F}.

Solution. We compute that

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial}{\partial x}\left(x^{2}+y-4\right)+\frac{\partial}{\partial y} 3 x y+\frac{\partial}{\partial z}\left(2 x z+z^{2}\right) \\
& =(2 x)+(3 x)+(2 x+2 z) \\
& =7 x+2 z
\end{aligned}
$$

and that

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}= & \left(\partial_{y}\left(2 x z+z^{2}\right)-\partial_{z} 3 x y\right) \mathbf{i}+\left(\partial_{z}\left(x^{2}+y-4\right)-\partial_{x}\left(2 x z+z^{2}\right)\right) \mathbf{j} \\
& +\left(\partial_{x} 3 x y-\partial_{y}\left(x^{2}+y-4\right)\right) \mathbf{k} \\
= & (0-0) \mathbf{i}+(0-2 z) \mathbf{j}+(3 y-1) \mathbf{k} \\
= & -2 z \mathbf{j}+(3 y-1) \mathbf{k} .
\end{aligned}
$$

