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Mathematics 1c: Solutions, Final Examination
Due: Wednesday, June 9, at 10am

1. (a) [7 points] Let f : R3 → R2 be defined by

f(x, y, z) =
(
e−2xy, x2 − z2 − 4x+ sin(x+ y + z)

)
and let g : R2 → R be a function such that g(1, 0) = −1, and
∇g(1, 0) = i − 3j. Calculate the gradient of the composition g ◦ f
at the point (0, 0, 0).

Solution. Let f(x, y, z) = (u(x, y, z), v(x, y, z)) and h(x, y, z) = g(f(x, y, z)).
By the chain rule,

∂h
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∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
,

∂h

∂y
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∂g

∂u

∂u

∂y
+
∂g

∂v

∂v
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,

and
∂h

∂z
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∂g

∂u

∂u
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+
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∂v
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∂z
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Thus, at (0, 0, 0),

∂h

∂x
= (1)(0) + (−3)(−4 + 1) = 9

∂h

∂y
= (1)(0) + (−3)(1) = −3

∂h

∂z
= (1)(0) + (−3)(1) = −3.

Therefore the gradient of g ◦ f at (0, 0, 0) is 9i− 3j− 3k.

(b) [5 points] Find the equation of the tangent plane to the level set g◦f =
−1 at the point (0, 0, 0), where g and f are defined in part (a).

Solution. The gradient from (a) is orthogonal to the level set g ◦ f =
−1, so therefore the tangent plane is given by

(x− 0)(9) + (y − 0)(−3) + (z − 0)(−3) = 0.

This may be rewritten as

3x− y − z = 0.
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(c) Consider the function f(x, y) = x2 + 3xy + y2 + 16.

i. [4 points] Show that f has a minimum at the origin along the
x-axis and the y-axis.

Solution. Note that f(x, 0) = x2+16. Since this is smallest when
x2 = 0, which only happens at x = 0, the origin is a minimum
along the x-axis. Note also that f(0, y) = y2+16, which is smallest
at y = 0. Thus the origin is a minimum along the y-axis.

ii. [4 points] Show that the origin is not a minimum of f by computing
the eigenvalues of the second derivative matrix of f evaluated at
the origin.

Solution. The matrix of second partial derivatives of f is

Hf(x, y) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2 3
3 2

)
.

The characteristic polynomial of this matrix is

det

(
2− λ 3

3 2− λ

)
= λ2−4λ+4−9 = λ2−4λ−5 = (λ−5)(λ+1).

Thus the eigenvalues of Hf(0, 0) are 5 and −1. Since one of these
is positive and the other negative, the origin is a saddle point, not
a minimum.

2. Answer each of the following three questions:

(a) [7 points] Let D be the parallelogram in the xy-plane with vertices

(0, 0), (1, 1), (1, 3), (0, 2).

Using a suitable change of variables, write an expression for the inte-
gral ∫∫

D

f(x, y) dxdy

of a function f(x, y), as an integral over the rectangle [0, 1]× [0, 1].

Solution. The parallelogram D is spanned by the vectors v1 = (1, 1)
and v2 = (0, 2). The linear transformation taking the standard basis
i and j to the vectors v1 and v2 has the 2× 2 matrix given by putting
the components of the latter into the columns of the matrix. That is,[

1 0
1 2

]
.
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Thus, the transformation taking the unit square [0, 1] × [0, 1] to the
parallelogram is given by x = u, y = u + 2v. The determinant of the
above matrix (which is the same as the determinant of the Jacobian
matrix) is 2. This both shows that this transformation is 1-1 and finds
the appropriate change of variables factor. Therefore, by the change
of variables theorem, we have that∫∫

D

f(x, y) dxdy =

∫ 1

0

∫ 1

0

2f(u, u+ 2v) dxdy.

(b) [6 points] Rewrite the integral∫ 1

0

∫ 1

0

∫ √1−y2

0

f(x, y, z) dz dy dx

in the order dy dz dx, including a sketch of the region of integration.

Solution. The region of integration is shown in the following figure.

z

x

y

z2 + y2 = 1 

Since, for each fixed x, the corresponding region is both y-simple and
z-simple, we may change the order of integration using Fubini’s The-
orem. In the order dy dz dx, we get∫ 1

0

∫ 1

0

∫ √1−z2
0

f(x, y, z) dy dz dx.
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(c) [7 points] Let S be the surface x2 + 2y2 + 2z2 = 1. Write down an
integral expression for its surface area.

Solution. First, we need to find a parametrization of the surface. An
appropriate choice would be the following modification of spherical
coordinates:

Φ(θ, φ) =

(
cos θ sinφ,

1√
2

sin θ sinφ,
1√
2

cosφ

)
.

We calculate that

Tθ =

(
− sin θ sinφ,

1√
2

cos θ sinφ,
1√
2

cosφ

)
and

Tφ =

(
cos θ cosφ,

1√
2

sin θ cosφ,
1√
2
− sinφ

)
.

Then we calculate that

Area =

∫ π

0

∫ 2π

0

‖Tθ ×Tφ‖dθdφ

=

∫ π

0

∫ 2π

0

sinφ

√
1

4
sin2 φ cos2 θ +

1

2
sin2 φ sin2 θ +

1

2
cos2 φ dθ dφ

=
1

2

∫ π

0

∫ 2π

0

sinφ

√
1 + sin2 φ sin2 θ + cos2 φ dθ dφ.

3. If true, justify, and if false, give a counterexample, or explain why.

(a) [3 points] The path integral
∫
c

2π ds is the surface area of a cylinder of
radius 1 and height 2π where the curve is defined by c = (cos t, sin t, 0),
and 0 ≤ t ≤ 2π.

Solution. True. The surface area is (circumference) × (height) =
(2π)× (2π) = (2π)2. The value of the path integral is also (2π)2.

(b) [4 points] If f(x, y) is a smooth function defined on the disk x2+y2 < 1
and has a strict minimum at the origin (0, 0), then the matrix of second
partial derivatives of f at (0, 0) is positive definite.

Solution. False. For example, let f(x, y) = x4 + y4. Then the matrix
of second partial derivatives at (0, 0) is the zero matrix, and hence not
positive definite, but the origin is nevertheless a minimum of f .
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(c) [3 points] If
∂2u

∂x2
+
∂2u

∂y2
= 0 on the disk x2 + y2 < 1, then

∫
C

∂u

∂y
dx− ∂u

∂x
dy = 0,

where C is the circle of radius 1
2

centered at the origin.

Solution. True. By Green’s theorem,∫
C

∂u

∂y
dx− ∂u

∂x
dy =

∫∫
D

(
− ∂

∂x

∂u

∂x
− ∂

∂y

∂u

∂y

)
dx dy

= −
∫∫

D

(
∂2u

∂x2
+
∂2u

∂y2

)
dx dy

= 0.

(d) [3 points] There is no vector field F such that ∇× F = xi + yj + zk.

Solution. True. If there were such an F, then we would have ∇·(∇×
F) = 0. However, ∇ · (xi + yj + zk) = 3. Therefore there is no such
F.

(e) [3 points] The flux of a (smooth) vector field F out of the unit sphere
x2 + y2 + z2 = 1 equals (4π/3) div F(P ) for some point P inside the
sphere.

Solution. True. By Gauss’ Theorem, the flux of F through the unit
sphere is equal to

∫∫∫
W

div F dx dy dz, where W is the unit ball. The
mean value theorem says that there is some point P in W at which
div F takes its average value on W . Since the volume of the unit ball
is 4π/3, this means div F(P ) equals the flux of F through the unit
sphere divided by 4π/3. Thus the flux of F through the unit sphere is
equal to (4π/3) div F(P ).

(f) [4 points] If f is a smooth function of (x, y), then there is at least
one point (x0, y0) on the circle x2 + y2 = 1 such that ∇f(x0, y0) =
λ(x0i + y0j) for some constant λ.

Solution. True. Let g(x, y) = x2 + y2, and let S = {(x, y) : g(x, y) =
1}. Note that

• S is the level set of a continuous function, hence closed.

• S is a circle, hence bounded.

• f is a continuous function.
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Hence f restricted to S achieves maximum and minimum values. At
points where this happens, the Lagrange multiplier theorem says that
∇f = λ1∇g for some constant λ1. Since ∇g(x, y) = (2x, 2y), this
means that ∇f(x0, y0) = λ(x0i + y0j) for λ = 2λ1.

4. Let W be the region in space under the graph of

f(x, y) = (cos y)exp(1− cos 2x) + xy

over the region in the xy plane bounded by the line y = 2x, the x axis, and
the line x = π/4.

(a) [10 points] Find the volume of W .

Solution. The region in the xy-plane is as shown in the following
figure.

x

y

π/4

D

y = 2x

The volume of W is∫∫
D

f(x, y)dy dx =

∫ π/4

0

∫ 2x

0

[(cos y)exp(1− cos 2x) + xy]dy dx

=

∫ π/4

0

[
(sin 2x)exp(1− cos 2x) + x · (2x)2

2

]
dx

=

[
1

2
exp(1− cos 2x) +

x4

2

]∣∣∣∣π/4
0

=
1

2
(e− 1) +

π4

512
.

(b) [10 points] Let F = 5xi + 5yj + 5zk be the velocity field of a fluid
in space. Calculate the rate at which fluid is leaving the region W in
part (a).
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Solution. By the divergence theorem, the flux is∫∫∫
W

div F dx dy dz =

∫∫∫
W

15 dx dy dz,

so the flux is 15
[
1
2
(e− 1) + π4

512

]
by (a).

5. Consider the vector field on R3 given by

F(x, y, z) = −yi + xj +
xyz2

x2 + z2 + 1
k

and the two surfaces S1 and S2 defined by

S1 : x2 + y2 + z2 = 1, and z ≤ 0

S2 : x2 + y2 +
1

2
z2 = 1, and z ≤ 0.

(a) [5 points] Draw a sketch of the surfaces, indicating compatible orien-
tations of the surfaces and that of the curve C given by x2 + y2 = 1
in the xy plane.

Solution. S1 is the lower hemisphere and S2 the lower half of an
ellipsoid. If C is oriented in the usual counterclockwise direction, then
S1 and S2 must be oriented by the choice of upward normal vector.
Sketch omitted.

(b) [5 points] Using Gauss’ theorem, show that the surface integrals of the
curl of F are equal:∫∫

S1

∇× F · dS =

∫∫
S2

∇× F · dS.

Solution. LetW be the bounded region between S1 and S2. In Gauss’
theorem we want to use the outward normal vector from W , which
means the upward normal vector for S1 and the downward normal
vector for S2. The fact that we are using the opposite normal vector
for S2 from above corresponds to a change of sign, so therefore we have∫∫

S1

∇× F · dS−
∫∫

S2

∇× F · dS =

∫∫∫
W

∇ · (∇× F) dW

=

∫∫∫
W

0 dW

= 0.

Thus
∫∫

S1
∇× F · dS =

∫∫
S2
∇× F · dS.
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(c) [5 points] Demonstrate the same equality using Stokes’ theorem.

Solution. Using Stokes’ theorem, we have that∫∫
S1

∇× F · dS =

∫
∂S1

F · ds =

∫
∂S2

F · ds =

∫∫
S2

∇× F · dS.

(d) [5 points] Evaluate the two given integrals.

Solution. By Stokes’ theorem, we may integrate the vector field along
the boundary. Parametrizing the boundary by c(t) = (cos t, sin t, 0),
we have that∫

C

F · ds =

∫ 2π

0

F (c(t)) · c′(t) dt

=

∫ 2π

0

(− sin t, cos t, 0) · (− sin t, cos t, 0) dt

=

∫ 2π

0

(sin2 t+ cos2 t) dt

=

∫ 2π

0

dt

= 2π.


