Mathematics 1c: Solutions, Final Examination

Due: Wednesday, June 9, at 10am

1. (a) [7 points] Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x, y, z)=\left(e^{-2 x y}, x^{2}-z^{2}-4 x+\sin (x+y+z)\right)
$$

and let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $g(1,0)=-1$, and $\nabla g(1,0)=\mathbf{i}-3 \mathbf{j}$. Calculate the gradient of the composition $g \circ f$ at the point $(0,0,0)$.

Solution. Let $f(x, y, z)=(u(x, y, z), v(x, y, z))$ and $h(x, y, z)=g(f(x, y, z))$. By the chain rule,

$$
\begin{aligned}
\frac{\partial h}{\partial x} & =\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial h}{\partial y} & =\frac{\partial g}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial y}
\end{aligned}
$$

and

$$
\frac{\partial h}{\partial z}=\frac{\partial g}{\partial u} \frac{\partial u}{\partial z}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial z}
$$

Thus, at $(0,0,0)$,

$$
\begin{aligned}
& \frac{\partial h}{\partial x}=(1)(0)+(-3)(-4+1)=9 \\
& \frac{\partial h}{\partial y}=(1)(0)+(-3)(1)=-3 \\
& \frac{\partial h}{\partial z}=(1)(0)+(-3)(1)=-3
\end{aligned}
$$

Therefore the gradient of $g \circ f$ at $(0,0,0)$ is $9 \mathbf{i}-3 \mathbf{j}-3 \mathbf{k}$.
(b) [5 points] Find the equation of the tangent plane to the level set $g \circ f=$ -1 at the point $(0,0,0)$, where g and f are defined in part (a).

Solution. The gradient from (a) is orthogonal to the level set $g \circ f=$ -1 , so therefore the tangent plane is given by

$$
(x-0)(9)+(y-0)(-3)+(z-0)(-3)=0 .
$$

This may be rewritten as

$$
3 x-y-z=0
$$

(c) Consider the function $f(x, y)=x^{2}+3 x y+y^{2}+16$.
i. [4 points] Show that f has a minimum at the origin along the x-axis and the y-axis.
Solution. Note that $f(x, 0)=x^{2}+16$. Since this is smallest when $x^{2}=0$, which only happens at $x=0$, the origin is a minimum along the x-axis. Note also that $f(0, y)=y^{2}+16$, which is smallest at $y=0$. Thus the origin is a minimum along the y-axis.
ii. [4 points] Show that the origin is not a minimum of f by computing the eigenvalues of the second derivative matrix of f evaluated at the origin.
Solution. The matrix of second partial derivatives of f is

$$
H f(x, y)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right) .
$$

The characteristic polynomial of this matrix is

$$
\operatorname{det}\left(\begin{array}{cc}
2-\lambda & 3 \\
3 & 2-\lambda
\end{array}\right)=\lambda^{2}-4 \lambda+4-9=\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)
$$

Thus the eigenvalues of $H f(0,0)$ are 5 and -1 . Since one of these is positive and the other negative, the origin is a saddle point, not a minimum.
2. Answer each of the following three questions:
(a) [7 points] Let D be the parallelogram in the $x y$-plane with vertices

$$
(0,0),(1,1),(1,3),(0,2)
$$

Using a suitable change of variables, write an expression for the integral

$$
\iint_{D} f(x, y) d x d y
$$

of a function $f(x, y)$, as an integral over the rectangle $[0,1] \times[0,1]$.
Solution. The parallelogram D is spanned by the vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(0,2)$. The linear transformation taking the standard basis \mathbf{i} and \mathbf{j} to the vectors \mathbf{v}_{1} and \mathbf{v}_{2} has the 2×2 matrix given by putting the components of the latter into the columns of the matrix. That is,

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]
$$

Thus, the transformation taking the unit square $[0,1] \times[0,1]$ to the parallelogram is given by $x=u, y=u+2 v$. The determinant of the above matrix (which is the same as the determinant of the Jacobian matrix) is 2 . This both shows that this transformation is 1-1 and finds the appropriate change of variables factor. Therefore, by the change of variables theorem, we have that

$$
\iint_{D} f(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} 2 f(u, u+2 v) d x d y
$$

(b) [6 points] Rewrite the integral

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} f(x, y, z) d z d y d x
$$

in the order $d y d z d x$, including a sketch of the region of integration.
Solution. The region of integration is shown in the following figure.

Since, for each fixed x, the corresponding region is both y-simple and z-simple, we may change the order of integration using Fubini's Theorem. In the order $d y d z d x$, we get

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} f(x, y, z) d y d z d x
$$

(c) [7 points] Let S be the surface $x^{2}+2 y^{2}+2 z^{2}=1$. Write down an integral expression for its surface area.

Solution. First, we need to find a parametrization of the surface. An appropriate choice would be the following modification of spherical coordinates:

$$
\boldsymbol{\Phi}(\theta, \phi)=\left(\cos \theta \sin \phi, \frac{1}{\sqrt{2}} \sin \theta \sin \phi, \frac{1}{\sqrt{2}} \cos \phi\right) .
$$

We calculate that

$$
\mathbf{T}_{\theta}=\left(-\sin \theta \sin \phi, \frac{1}{\sqrt{2}} \cos \theta \sin \phi, \frac{1}{\sqrt{2}} \cos \phi\right)
$$

and

$$
\mathbf{T}_{\phi}=\left(\cos \theta \cos \phi, \frac{1}{\sqrt{2}} \sin \theta \cos \phi, \frac{1}{\sqrt{2}}-\sin \phi\right) .
$$

Then we calculate that

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi} \int_{0}^{2 \pi}\left\|\mathbf{T}_{\theta} \times \mathbf{T}_{\phi}\right\| d \theta d \phi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \phi \sqrt{\frac{1}{4} \sin ^{2} \phi \cos ^{2} \theta+\frac{1}{2} \sin ^{2} \phi \sin ^{2} \theta+\frac{1}{2} \cos ^{2} \phi} d \theta d \phi \\
& =\frac{1}{2} \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \phi \sqrt{1+\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi} d \theta d \phi .
\end{aligned}
$$

3. If true, justify, and if false, give a counterexample, or explain why.
(a) [3 points] The path integral $\int_{\mathbf{c}} 2 \pi d s$ is the surface area of a cylinder of radius 1 and height 2π where the curve is defined by $\mathbf{c}=(\cos t, \sin t, 0)$, and $0 \leq t \leq 2 \pi$.

Solution. True. The surface area is (circumference) \times (height) $=$ $(2 \pi) \times(2 \pi)=(2 \pi)^{2}$. The value of the path integral is also $(2 \pi)^{2}$.
(b) [4 points] If $f(x, y)$ is a smooth function defined on the disk $x^{2}+y^{2}<1$ and has a strict minimum at the origin $(0,0)$, then the matrix of second partial derivatives of f at $(0,0)$ is positive definite.

Solution. False. For example, let $f(x, y)=x^{4}+y^{4}$. Then the matrix of second partial derivatives at $(0,0)$ is the zero matrix, and hence not positive definite, but the origin is nevertheless a minimum of f.
(c) [3 points] If $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ on the disk $x^{2}+y^{2}<1$, then

$$
\int_{C} \frac{\partial u}{\partial y} d x-\frac{\partial u}{\partial x} d y=0
$$

where C is the circle of radius $\frac{1}{2}$ centered at the origin.
Solution. True. By Green's theorem,

$$
\begin{aligned}
\int_{C} \frac{\partial u}{\partial y} d x-\frac{\partial u}{\partial x} d y & =\iint_{D}\left(-\frac{\partial}{\partial x} \frac{\partial u}{\partial x}-\frac{\partial}{\partial y} \frac{\partial u}{\partial y}\right) d x d y \\
& =-\iint_{D}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) d x d y \\
& =0 .
\end{aligned}
$$

(d) $[3$ points $]$ There is no vector field \mathbf{F} such that $\nabla \times \mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Solution. True. If there were such an \mathbf{F}, then we would have $\nabla \cdot(\nabla \times$ $\mathbf{F})=0$. However, $\nabla \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=3$. Therefore there is no such F.
(e) [3 points] The flux of a (smooth) vector field \mathbf{F} out of the unit sphere $x^{2}+y^{2}+z^{2}=1$ equals $(4 \pi / 3)$ div $\mathbf{F}(P)$ for some point P inside the sphere.

Solution. True. By Gauss' Theorem, the flux of \mathbf{F} through the unit sphere is equal to $\iiint_{W} \operatorname{div} \mathbf{F} d x d y d z$, where W is the unit ball. The mean value theorem says that there is some point P in W at which $\operatorname{div} \mathbf{F}$ takes its average value on W. Since the volume of the unit ball is $4 \pi / 3$, this means $\operatorname{div} \mathbf{F}(P)$ equals the flux of F through the unit sphere divided by $4 \pi / 3$. Thus the flux of F through the unit sphere is equal to $(4 \pi / 3) \operatorname{div} \mathbf{F}(P)$.
(f) [4 points] If f is a smooth function of (x, y), then there is at least one point $\left(x_{0}, y_{0}\right)$ on the circle $x^{2}+y^{2}=1$ such that $\nabla f\left(x_{0}, y_{0}\right)=$ $\lambda\left(x_{0} \mathbf{i}+y_{0} \mathbf{j}\right)$ for some constant λ.

Solution. True. Let $g(x, y)=x^{2}+y^{2}$, and let $S=\{(x, y): g(x, y)=$ 1\}. Note that

- S is the level set of a continuous function, hence closed.
- S is a circle, hence bounded.
- f is a continuous function.

Hence f restricted to S achieves maximum and minimum values. At points where this happens, the Lagrange multiplier theorem says that $\nabla f=\lambda_{1} \nabla g$ for some constant λ_{1}. Since $\nabla g(x, y)=(2 x, 2 y)$, this means that $\nabla f\left(x_{0}, y_{0}\right)=\lambda\left(x_{0} \mathbf{i}+y_{0} \mathbf{j}\right)$ for $\lambda=2 \lambda_{1}$.
4. Let W be the region in space under the graph of

$$
f(x, y)=(\cos y) \exp (1-\cos 2 x)+x y
$$

over the region in the $x y$ plane bounded by the line $y=2 x$, the x axis, and the line $x=\pi / 4$.
(a) [10 points] Find the volume of W.

Solution. The region in the $x y$-plane is as shown in the following figure.

The volume of W is

$$
\begin{aligned}
\iint_{D} f(x, y) d y d x & =\int_{0}^{\pi / 4} \int_{0}^{2 x}[(\cos y) \exp (1-\cos 2 x)+x y] d y d x \\
& =\int_{0}^{\pi / 4}\left[(\sin 2 x) \exp (1-\cos 2 x)+x \cdot \frac{(2 x)^{2}}{2}\right] d x \\
& =\left.\left[\frac{1}{2} \exp (1-\cos 2 x)+\frac{x^{4}}{2}\right]\right|_{0} ^{\pi / 4} \\
& =\frac{1}{2}(e-1)+\frac{\pi^{4}}{512}
\end{aligned}
$$

(b) [10 points $]$ Let $\mathbf{F}=5 x \mathbf{i}+5 y \mathbf{j}+5 z \mathbf{k}$ be the velocity field of a fluid in space. Calculate the rate at which fluid is leaving the region W in part (a).

Solution. By the divergence theorem, the flux is

$$
\iiint_{W} \operatorname{div} \mathbf{F} d x d y d z=\iiint_{W} 15 d x d y d z,
$$

so the flux is $15\left[\frac{1}{2}(e-1)+\frac{\pi^{4}}{512}\right]$ by (a).
5. Consider the vector field on \mathbb{R}^{3} given by

$$
\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}+\frac{x y z^{2}}{x^{2}+z^{2}+1} \mathbf{k}
$$

and the two surfaces S_{1} and S_{2} defined by

$$
\begin{aligned}
S_{1}: & x^{2}+y^{2}+z^{2}=1, \quad \text { and } \quad z \leq 0 \\
S_{2}: & x^{2}+y^{2}+\frac{1}{2} z^{2}=1, \quad \text { and } \quad z \leq 0
\end{aligned}
$$

(a) [5 points] Draw a sketch of the surfaces, indicating compatible orientations of the surfaces and that of the curve C given by $x^{2}+y^{2}=1$ in the $x y$ plane.

Solution. S_{1} is the lower hemisphere and S_{2} the lower half of an ellipsoid. If C is oriented in the usual counterclockwise direction, then S_{1} and S_{2} must be oriented by the choice of upward normal vector. Sketch omitted.
(b) [5 points] Using Gauss' theorem, show that the surface integrals of the curl of \mathbf{F} are equal:

$$
\iint_{S_{1}} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \nabla \times \mathbf{F} \cdot d \mathbf{S} .
$$

Solution. Let W be the bounded region between S_{1} and S_{2}. In Gauss' theorem we want to use the outward normal vector from W, which means the upward normal vector for S_{1} and the downward normal vector for S_{2}. The fact that we are using the opposite normal vector for S_{2} from above corresponds to a change of sign, so therefore we have

$$
\begin{aligned}
\iint_{S_{1}} \nabla \times \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{2}} \nabla \times \mathbf{F} \cdot d \mathbf{S} & =\iiint_{W} \nabla \cdot(\nabla \times \mathbf{F}) d W \\
& =\iiint_{W} 0 d W \\
& =0
\end{aligned}
$$

Thus $\iint_{S_{1}} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \nabla \times \mathbf{F} \cdot d \mathbf{S}$.
(c) [5 points] Demonstrate the same equality using Stokes' theorem.

Solution. Using Stokes' theorem, we have that

$$
\iint_{S_{1}} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\int_{\partial S_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{\partial S_{2}} \mathbf{F} \cdot d \mathbf{s}=\iint_{S_{2}} \nabla \times \mathbf{F} \cdot d \mathbf{S} .
$$

(d) [5 points] Evaluate the two given integrals.

Solution. By Stokes' theorem, we may integrate the vector field along the boundary. Parametrizing the boundary by $\mathbf{c}(t)=(\cos t, \sin t, 0)$, we have that

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\int_{0}^{2 \pi} F(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}(-\sin t, \cos t, 0) \cdot(-\sin t, \cos t, 0) d t \\
& =\int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t\right) d t \\
& =\int_{0}^{2 \pi} d t \\
& =2 \pi
\end{aligned}
$$

