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Mathematics 1c: Solutions, Homework Set 8
Due: Tuesday, June 1 at 10am.

1. (10 Points) Section 8.1, Exercises 3c and 3d. Verify Green’s theorem for
the disk D with center (0, 0) and radius R and P (x, y) = xy = Q(x, y) and the
same disk for P = 2y,Q = x. .

Solution. For 3c, let c(t) = (R cos t, R sin t) be the parameterization of ∂D.
Then∫

∂D
P dx+Qdy =

∫ 2π

0
(R2 cos t sin t, R2 cos t sin t) · (−R sin t, R cos t)dt

= −R3

∫ 2π

0
sin2 t cos t dt+R3

∫ 2π

0
cos2 t sin t dt

= 0 + 0 = 0.

Also, ∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫∫
D

(y − x)dx dy

=

∫ R

0

∫ 2π

0
(r sin θ − r cos θ)r dθ dr

=

∫ R

0
(0 + 0)r2dr = 0.

Hence, Green’s theorem for 3c is verified.

For 3d, note that Green’s theorem∫
∂D

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy

becomes ∫
∂D

2y dx+ x dy =

∫∫
D

(1− 2)dx dy = −
∫∫

D
dx dy

The right side is −πR2 while the left side is, since x = R cos θ and y = R sin θ,∫ 2π

0
(2R sin θ)(−R sin θ)dθ + (R cos θ)(R cos θ)dθ

= −2R2

∫ 2π

0
sin2 θdθ +R2

∫ 2π

0
cos2 θdθ.

Using the fact that sin2 θ and cos2 θ have averages 1
2 , namely

1

2π

∫ 2π

0
sin2 θdθ =

1

2

(this is one way of remembering the formula for the integrals of sin2 θ and
cos2 θ on [0, 2π] and [0, π]), we get −2R2 · π + R2 · π = −πR2. Thus, Green’s
theorem checks.
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2. (10 Points) Section 8.2, Exercise 3. Verify Stokes’ theorem for z =
√

1− x2 − y2,
the upper hemisphere, with z ≥ 0, and the radial vector field F(x, y, z) =
xi + yj + zk.

Solution. Let H be the upper hemisphere.

(i) Since F(x, y, z) = (x, y, z), we have ∇× F = 0, so∫∫
H

(∇× F) · dS = 0.

(ii) Notice that the tangent to ∂H at the point (x, y, 0) is the vector (−y, x, 0)
which is perpendicular to F = (x, y, z). So∫

∂H
F · dS = 0.

Hence, Stokes’ theorem is verified.

3. (10 Points) Section 8.2, Exercise 16. For a surface S and a fixed vector v,
prove that

2

∫∫
S
v · n dS =

∫
∂S

(v × r) · dS,

where r(x, y, z) = (x, y, z).

Solution. Let v = (a, b, c) and r = (x, y, z). Then

v × r =

∣∣∣∣∣∣
i j k
a b c
x y z

∣∣∣∣∣∣
= (bz − cy, cx− az, ay − bx)

and

∇× (v × r) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

bz − cy cx− az ay − bx

∣∣∣∣∣∣
= (2a, 2b, 2c)

= 2v.

Therefore, by Stokes’ theorem, we have∫
∂S

(v × r) · dS =

∫∫
S

(∇× (v × r)) · dS = 2

∫∫
S
v · n dS.

4. (15 Points) Section 8.2, Exercise 23. Let F = x2i+ (2xy+x)j+ zk. Let C
be the circle x2 + y2 = 1 in the plane z = 0 oriented counterclockwise and S
the disk x2 + y2 ≤ 1 oriented with the normal vector k. Determine:
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(a) The integral of F over S.

(b) The circulation of F around C.

(c) Find the integral of ∇×F over S. Verify Stokes’ theorem directly in this
case.

Solution.

(a) Notice that F = (x2, 2xy + x, 0) on S. Hence∫∫
S
F · dS =

∫∫
S

(x2, 2xy + x, 0) · (0, 0, 1) dS = 0.

(b) Let c(t) = (cos t, sin t, 0) be the parameterization of C. Then∫
C
F · dS =

∫ 2π

0
(cos2 t, 2 cos t sin t+ cos t, 0) · (− sin t, cos t, 0)dt

=

∫ 2π

0
(cos2 t sin t+ cos2 t)dt = π.

(c) Routine computation shows that ∇× F = (0, 0, 2y + 1). Hence∫∫
S

(∇× F) · dS =

∫ 1

0

∫ 2π

0
(0, 0, 2r sin θ + 1) · (0, 0, 1)r dθ dr

=

∫ 1

0

∫ 2π

0
(2r sin θ + 1)r dθ dr = π.

Combining the results in (b) and (c), Stokes’ theorem is verified.

5. (15 Points) Section 8.3, Exercise 14. Determine which of the following
vector fields F in the plane is the gradient of a scalar function f . If such an
f exists, find it.

(a) F(x, y) = (cosxy − xy sinxy)i− (x2 sinxy)j

(b) F(x, y) = (x
√
x2y2 + 1)i + (y

√
x2y2 + 1)j

(c) F(x, y) = (2x cos y + cos y)i− (x2 sin y + x sin y)j.

Solution. In this problem, we apply the cross-derivative test. For example,
for problem (a),

∂F1

∂y
− ∂F2

∂x
= (x sinxy−x sinxy−x2y cosxy)− (−2x sinxy−x2y cosxy) = 0,

so F is indeed the gradient of some function on the plane. To find such a
function, we seek f satisfying

∂f

∂y
= F2 = x2 sinxy,
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for example, f(x, y) = x cosxy. (Of course, f is unique only up to an additive
constant). Part (b) and (c) proceed similarly. (b) is not a gradient field. For
part (c), f(x, y) = x2 cos y + x cos y is a function whose gradient is the given
field.

6. (10 Points) Section 8.4, Exercise 2. Let F = x3i + y3j + z3k. Evaluate the
surface integral of F over the unit sphere.

Solution. Rather than integrating F = x3i + y3j + z3k over the sphere
directly, we apply Gauss’ theorem and integrate

∇ · F = 3(x2 + y2 + z2) = 3ρ2

over the unit ball:∫∫∫
B
∇ · Fρ2 sinφdρ dθ dφ = 3

∫ π

0

∫ 2π

0

∫ 1

0
ρ4 sinφdρ dθ dφ =

12π

5
.

7. (10 Points) Section 8.4, Exercise 14. Fix k vectors v1, . . . ,vk in space and
numbers (“charges”) q1, . . . , qk. Define

φ(x, y, z) =

k∑
i=1

qi
4π‖r− vi‖

,

where r = (x, y, z). Show that for a closed surface S and e = −∇φ,∫∫
S
e · dS = Q,

where Q = q1 + · · ·+ qk is the total charge inside S. Assume that none of the
charges are on S.

Solution. Surround each charge at vector vi by a small ball Bi in such a
way that the Bi are mutually disjoint and do not intersect S. Assume that
B1, . . . , Bn, (where n ≤ k) are those balls contained within S. Then since
div e = 0, and as in Theorem 10,∫∫

S
e · dS =

n∑
i=1

∫∫
∂Bi

e · dS

where ∂Bi is given the outward orientation. But again, as in Theorem 10,∫∫
∂Bi

e · dS = qi.

Thus, ∫∫
S
e · dS =

n∑
i=1

qi = Q,

the total charge inside S.


