Mathematics 1c: Solutions, Homework Set 8
Due: Tuesday, June 1 at 10am.

1. (10 Points) Section 8.1, Exercises 3c and 3d. Verify Green’s theorem for
the disk D with center (0,0) and radius R and P(x,y) = zy = Q(z,y) and the
same disk for P =2y,Q = x. .

Solution. For 3c, let c(t) = (Rcost, Rsint) be the parameterization of dD.
Then

Pdx+Qdy = /27r(R2 costsint, R? costsint) - (—Rsint, Rcost)dt
oD 0 . .
= —-R? / sin?tcostdt + R / cos® tsint dt
= 040 i 0. ’
Also,

//D(gg‘?;>dwdy = //D(y—x)dxdy

R r2n
= / / (rsin® — rcos)rdf dr
o Jo

R
= / (0+0)r?dr = 0.
0

Hence, Green’s theorem for 3c is verified.

For 3d, note that Green’s theorem

/ Pda:+Qdy:// <8Q—8P>dazdy
oD p \ Oz dy

/ 2yd$+xdy:// (1—2)dxdy:—// dx dy
oD D D

The right side is —mR? while the left side is, since = Rcosf and y = Rsin#,

becomes

27
/ (2Rsinf)(—Rsin#)dd + (R cos0)(R cos 8)db
0

27 27
= —2R? / sin® 0df + R> / cos® 0de.
0 0

1

Using the fact that sin? @ and cos? § have averages 5

1 2T
— / sin? 6d6 = }
27T 0 2

(this is one way of remembering the formula for the integrals of sin?# and
cos? 0 on [0,27] and [0,7]), we get —2R? - 7+ R? -7 = —wR% Thus, Green’s
theorem checks.

namely



2. (10 Points) Section 8.2, Exercise 3. Verify Stokes’ theorem for z = \/1 — 22 — y2,
the upper hemisphere, with z > 0, and the radial vector field F(x,y,z) =
xi—+ yj + zk.

Solution. Let H be the upper hemisphere.

(i) Since F(z,y,2) = (z,y,2), we have V x F =0, so
/ (VxF)-dS=0.

(ii) Notice that the tangent to OH at the point (z,y, 0) is the vector (—y, x,0)
which is perpendicular to F = (x,y, z). So

/ F-dsS =0.
oH

Hence, Stokes’ theorem is verified.

. (10 Points) Section 8.2, Exercise 16. For a surface S and a fized vector v,

prove that
//v ndS = (v xr)-dS,
oS

where v(z,y,z) = (v,y, 2
Solution. Let v = (a,b,c) and r = (x,y, z). Then
i j k
vxr=la b c
r Yy z

= (bz — cy,cx — az,ay — bx)

and
i j k
0 0 0
Vx(vxr)=| 5 9y 52
bz—cy cx—az ay-—bx
= (2a,2b,2c)
= 2v.

Therefore, by Stokes’ theorem, we have

/as(vxr)-dS://S(Vx(VXr)).dSZQ//SV'ndS'

. (15 Points) Section 8.2, Exercise 23. Let F = 2%i+ (2zy +)j + zk. Let C
be the circle % 4+ y?> = 1 in the plane z = 0 oriented counterclockwise and S
the disk x? + y? < 1 oriented with the normal vector k. Determine:



(a) The integral of F over S.

(b) The circulation of F around C.

(c) Find the integral of V x F over S. Verify Stokes’ theorem directly in this
case.

Solution.

(a) Notice that F' = (2%, 2xy + 2,0) on S. Hence

//gF 5= //s(xz’%y”,o) +(0,0,1)dS = 0.

(b) Let ¢(t) = (cost,sint,0) be the parameterization of C. Then
27
/ F.-dS = / (cos®t,2costsint + cost,0) - (—sint,cost,0)dt
C 0
27
= / (cos® tsint + cos? t)dt = .
0
(c) Routine computation shows that V x F = (0,0,2y + 1). Hence

1 2m
//(VXF)'dS = // (0,0,2rsinf + 1) - (0,0,1)r df dr
S o Jo
1 2m
= // (2rsinf + 1)rdf dr = .
o Jo

Combining the results in (b) and (c), Stokes’ theorem is verified.

. (15 Points) Section 8.3, Exercise 14. Determine which of the following
vector fields F in the plane is the gradient of a scalar function f. If such an
f exists, find it.

2

(a) F(z,y) = (cosxy — zysinzy)i — (z°sinzy)j

(b) F(z,y) = (zv/a?y? + i+ (yy/2?y> + 1)]

2

(c) F(z,y) = (2xcosy+ cosy)i — (z°siny + xsiny)j.

Solution. In this problem, we apply the cross-derivative test. For example,

for problem (a),

oF) OF.

=1 2 (zsin xy — xsin 2y — 2%y cos 2y) — (—2x sin 2y — 2%y cos xy) = 0,
oy ox

so F is indeed the gradient of some function on the plane. To find such a
function, we seek f satisfying

of
dy

= Fy, = 2?sinay,



for example, f(x,y) = xcoszy. (Of course, f is unique only up to an additive
constant). Part (b) and (c) proceed similarly. (b) is not a gradient field. For
part (c), f(z,y) = 2% cosy + xcosy is a function whose gradient is the given
field.

. (10 Points) Section 8.4, Exercise 2. Let F = z3i + y3j + 2°k. Evaluate the
surface integral of F over the unit sphere.

Solution. Rather than integrating F = 2%i + 33j + 2%k over the sphere
directly, we apply Gauss’ theorem and integrate

V-F=3"+y*+2%) =3p°

over the unit ball:

5 . T 2w 1 1 127
V- -Fp“singpdpdfdp =3 p singpdpdfdp = —.
B 0 0 0 5

. (10 Points) Section 8.4, Exercise 14. Fix k vectors vi,...,Vy in space and
numbers (“charges”) qu,...,qr. Define

k

— Amr — vil|’

where v = (x,y, z). Show that for a closed surface S and e = —V ¢,

/AedS:Q

where Q = q1 + -+ - + qg. is the total charge inside S. Assume that none of the
charges are on S.

Solution. Surround each charge at vector v; by a small ball B; in such a
way that the B; are mutually disjoint and do not intersect S. Assume that
Bi,...,B,, (where n < k) are those balls contained within S. Then since
div e = 0, and as in Theorem 10,

//Se-dS:izZ;//aBie-dS

where 0B; is given the outward orientation. But again, as in Theorem 10,

// e~dS:qZ-.
oB;

/Ae-dS—gqi—Q,

Thus,

the total charge inside S.



