Mathematics 1c: Solutions, Homework Set 8

Due: Tuesday, June 1 at 10am.

1. (10 Points) Section 8.1, Exercises 3c and 3d. Verify Green's theorem for the disk D with center $(0,0)$ and radius R and $P(x, y)=x y=Q(x, y)$ and the same disk for $P=2 y, Q=x$. .

Solution. For 3c, let $\mathbf{c}(t)=(R \cos t, R \sin t)$ be the parameterization of ∂D. Then

$$
\begin{aligned}
\int_{\partial D} P d x+Q d y & =\int_{0}^{2 \pi}\left(R^{2} \cos t \sin t, R^{2} \cos t \sin t\right) \cdot(-R \sin t, R \cos t) d t \\
& =-R^{3} \int_{0}^{2 \pi} \sin ^{2} t \cos t d t+R^{3} \int_{0}^{2 \pi} \cos ^{2} t \sin t d t \\
& =0+0=0
\end{aligned}
$$

Also,

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y & =\iint_{D}(y-x) d x d y \\
& =\int_{0}^{R} \int_{0}^{2 \pi}(r \sin \theta-r \cos \theta) r d \theta d r \\
& =\int_{0}^{R}(0+0) r^{2} d r=0 .
\end{aligned}
$$

Hence, Green's theorem for 3 c is verified.

For 3d, note that Green's theorem

$$
\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

becomes

$$
\int_{\partial D} 2 y d x+x d y=\iint_{D}(1-2) d x d y=-\iint_{D} d x d y
$$

The right side is $-\pi R^{2}$ while the left side is, since $x=R \cos \theta$ and $y=R \sin \theta$,

$$
\begin{gathered}
\int_{0}^{2 \pi}(2 R \sin \theta)(-R \sin \theta) d \theta+(R \cos \theta)(R \cos \theta) d \theta \\
=-2 R^{2} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta+R^{2} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta
\end{gathered}
$$

Using the fact that $\sin ^{2} \theta$ and $\cos ^{2} \theta$ have averages $\frac{1}{2}$, namely

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\frac{1}{2}
$$

(this is one way of remembering the formula for the integrals of $\sin ^{2} \theta$ and $\cos ^{2} \theta$ on $[0,2 \pi]$ and $[0, \pi]$), we get $-2 R^{2} \cdot \pi+R^{2} \cdot \pi=-\pi R^{2}$. Thus, Green's theorem checks.
2. (10 Points) Section 8.2, Exercise 3. Verify Stokes' theorem for $z=\sqrt{1-x^{2}-y^{2}}$, the upper hemisphere, with $z \geq 0$, and the radial vector field $\mathbf{F}(x, y, z)=$ $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Solution. Let H be the upper hemisphere.
(i) Since $\mathbf{F}(x, y, z)=(x, y, z)$, we have $\nabla \times \mathbf{F}=\mathbf{0}$, so

$$
\iint_{H}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=0
$$

(ii) Notice that the tangent to ∂H at the point $(x, y, 0)$ is the vector $(-y, x, 0)$ which is perpendicular to $\mathbf{F}=(x, y, z)$. So

$$
\int_{\partial H} \mathbf{F} \cdot d \mathbf{S}=0
$$

Hence, Stokes' theorem is verified.
3. (10 Points) Section 8.2, Exercise 16. For a surface S and a fixed vector \mathbf{v}, prove that

$$
2 \iint_{S} \mathbf{v} \cdot \mathbf{n} d S=\int_{\partial S}(\mathbf{v} \times \mathbf{r}) \cdot d \mathbf{S}
$$

where $\mathbf{r}(x, y, z)=(x, y, z)$.

Solution. Let $\mathbf{v}=(a, b, c)$ and $\mathbf{r}=(x, y, z)$. Then

$$
\begin{aligned}
\mathbf{v} \times \mathbf{r} & =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a & b & c \\
x & y & z
\end{array}\right| \\
& =(b z-c y, c x-a z, a y-b x)
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla \times(\mathbf{v} \times \mathbf{r}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
b z-c y & c x-a z & a y-b x
\end{array}\right| \\
& =(2 a, 2 b, 2 c) \\
& =2 \mathbf{v}
\end{aligned}
$$

Therefore, by Stokes' theorem, we have

$$
\int_{\partial S}(\mathbf{v} \times \mathbf{r}) \cdot d \mathbf{S}=\iint_{S}(\nabla \times(\mathbf{v} \times \mathbf{r})) \cdot d \mathbf{S}=2 \iint_{S} \mathbf{v} \cdot \mathbf{n} d S
$$

4. (15 Points) Section 8.2, Exercise 23. Let $\mathbf{F}=x^{2} \mathbf{i}+(2 x y+x) \mathbf{j}+z \mathbf{k}$. Let C be the circle $x^{2}+y^{2}=1$ in the plane $z=0$ oriented counterclockwise and S the disk $x^{2}+y^{2} \leq 1$ oriented with the normal vector \mathbf{k}. Determine:
(a) The integral of \mathbf{F} over S.
(b) The circulation of \mathbf{F} around C.
(c) Find the integral of $\nabla \times \mathbf{F}$ over S. Verify Stokes' theorem directly in this case.

Solution.

(a) Notice that $F=\left(x^{2}, 2 x y+x, 0\right)$ on S. Hence

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}\left(x^{2}, 2 x y+x, 0\right) \cdot(0,0,1) d S=0
$$

(b) Let $c(t)=(\cos t, \sin t, 0)$ be the parameterization of C. Then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi}\left(\cos ^{2} t, 2 \cos t \sin t+\cos t, 0\right) \cdot(-\sin t, \cos t, 0) d t \\
& =\int_{0}^{2 \pi}\left(\cos ^{2} t \sin t+\cos ^{2} t\right) d t=\pi
\end{aligned}
$$

(c) Routine computation shows that $\nabla \times \mathbf{F}=(0,0,2 y+1)$. Hence

$$
\begin{aligned}
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} & =\int_{0}^{1} \int_{0}^{2 \pi}(0,0,2 r \sin \theta+1) \cdot(0,0,1) r d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi}(2 r \sin \theta+1) r d \theta d r=\pi
\end{aligned}
$$

Combining the results in (b) and (c), Stokes' theorem is verified.
5. (15 Points) Section 8.3, Exercise 14. Determine which of the following vector fields \mathbf{F} in the plane is the gradient of a scalar function f. If such an f exists, find it.
(a) $\mathbf{F}(x, y)=(\cos x y-x y \sin x y) \mathbf{i}-\left(x^{2} \sin x y\right) \mathbf{j}$
(b) $\mathbf{F}(x, y)=\left(x \sqrt{x^{2} y^{2}+1} \mathbf{i}+\left(y \sqrt{x^{2} y^{2}+1}\right) \mathbf{j}\right.$
(c) $\mathbf{F}(x, y)=(2 x \cos y+\cos y) \mathbf{i}-\left(x^{2} \sin y+x \sin y\right) \mathbf{j}$.

Solution. In this problem, we apply the cross-derivative test. For example, for problem (a),

$$
\frac{\partial F_{1}}{\partial y}-\frac{\partial F_{2}}{\partial x}=\left(x \sin x y-x \sin x y-x^{2} y \cos x y\right)-\left(-2 x \sin x y-x^{2} y \cos x y\right)=0
$$

so \mathbf{F} is indeed the gradient of some function on the plane. To find such a function, we seek f satisfying

$$
\frac{\partial f}{\partial y}=F_{2}=x^{2} \sin x y
$$

for example, $f(x, y)=x \cos x y$. (Of course, f is unique only up to an additive constant). Part (b) and (c) proceed similarly. (b) is not a gradient field. For part (c), $f(x, y)=x^{2} \cos y+x \cos y$ is a function whose gradient is the given field.
6. (10 Points) Section 8.4, Exercise 2. Let $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$. Evaluate the surface integral of \mathbf{F} over the unit sphere.

Solution. Rather than integrating $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ over the sphere directly, we apply Gauss' theorem and integrate

$$
\nabla \cdot \mathbf{F}=3\left(x^{2}+y^{2}+z^{2}\right)=3 \rho^{2}
$$

over the unit ball:

$$
\iiint_{B} \nabla \cdot \mathbf{F} \rho^{2} \sin \phi d \rho d \theta d \phi=3 \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{4} \sin \phi d \rho d \theta d \phi=\frac{12 \pi}{5} .
$$

7. (10 Points) Section 8.4, Exercise 14. Fix k vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in space and numbers ("charges") q_{1}, \ldots, q_{k}. Define

$$
\phi(x, y, z)=\sum_{i=1}^{k} \frac{q_{i}}{4 \pi\left\|\mathbf{r}-\mathbf{v}_{i}\right\|},
$$

where $\mathbf{r}=(x, y, z)$. Show that for a closed surface S and $\mathbf{e}=-\nabla \phi$,

$$
\iint_{S} \mathbf{e} \cdot d \mathbf{S}=Q
$$

where $Q=q_{1}+\cdots+q_{k}$ is the total charge inside S. Assume that none of the charges are on S.

Solution. Surround each charge at vector \mathbf{v}_{i} by a small ball B_{i} in such a way that the B_{i} are mutually disjoint and do not intersect S. Assume that B_{1}, \ldots, B_{n}, (where $n \leq k$) are those balls contained within S. Then since $\operatorname{div} \mathbf{e}=0$, and as in Theorem 10,

$$
\iint_{S} \mathbf{e} \cdot d \mathbf{S}=\sum_{i=1}^{n} \iint_{\partial B_{i}} \mathbf{e} \cdot d \mathbf{S}
$$

where ∂B_{i} is given the outward orientation. But again, as in Theorem 10,

$$
\iint_{\partial B_{i}} \mathbf{e} \cdot d \mathbf{S}=q_{i} .
$$

Thus,

$$
\iint_{S} \mathbf{e} \cdot d \mathbf{S}=\sum_{i=1}^{n} q_{i}=Q
$$

the total charge inside S.

