
1

Mathematics 1c: Solutions, Homework Set 7
Due: Monday, May 24 at 10am.

1. (10 Points) Section 7.3, Exercise 6. Find an expression for a unit vector
normal to the surface

x = 3 cos θ sinφ, y = 2 sin θ sinφ, z = cosφ

for θ in [0, 2π] and φ in [0, π].

Solution. Here,

Tθ = (−3 sin θ sinφ, 2 cos θ sinφ, 0)

and
Tφ = (3 cos θ cosφ, 2 sin θ cosφ,− sinφ).

Thus,
Tθ ×Tφ = (−2 cos θ sin2 φ,−3 sin θ sin2 φ,−6 sinφ cosφ)

and
‖Tθ ×Tφ‖ = sinφ(5 sin2 θ sin2 φ+ 32 cos2 φ+ 4)1/2.

Hence a unit normal vector is

n =
Tθ ×Tφ

‖Tθ ×Tφ‖
=

1

sinφ
√

5 sin2 θ sin2 φ+ 32 cos2 φ+ 4

× (−2 cos θ sin2 φ,−3 sin θ sin2 φ,−6 sinφ cosφ).

Since
x2

9
+
y2

4
+ z2 = 1,

the surface is an ellipsoid.

2. (15 Points) Section 7.3, Exercise 15

(a) Find a parameterization for the hyperboloid x2 + y2 − z2 = 25.

(b) Find an expression for a unit normal to this surface.

(c) Find an equation for the plane tangent to the surface at (x0, y0, 0), where
x20 + y20 = 25.

(d) Show that the pair of lines (x0, y0, 0) + t(−y0, x0, 5) and (x0, y0, 0) +
t(y0,−x0, 5) lie in the surface and as well as in the tangent plane found
in part (c).
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Solution. This solution uses hyperbolic functions!

(a)

x = 5 coshu cos θ

y = 5 coshu sin θ

z = 5 sinhu

(b) Since f(x, y, z) = x2 + y2 − z2 = 25, the unit normal is

n =
∇f
‖∇f‖

, ∇f = (2x, 2y,−2z).

Thus,

n =
2(x, y,−z)

2
√
x2 + y2 + z2

=
1√

cosh (2u)
(coshu cos θ, coshu sin θ,−sinhu).

(c) Since the normal vector of the tangent plane is parallel to the gradient
∇f(x0, y0, 0) = (2x0, 2y0, 0), an equation of the plane is

(x0, y0, 0) · (x− x0, y − y0, z − 0) = 0,

i.e.,
x0(x− x0) + y0(y − y0) = 0.

(d) One simply substitutes into the equation of the surface and the tangent
plane and verifies that they are satisfied.

Note. The property in (d) is of course very special and the surface is called
ruled since this argument actually shows that the surface is a union of straight
lines. If one looks at some cooling towers, one sees that architects make them
a hyperbolic shape partly because their ruled nature allows for structural
strength as well as some construction advantages.

3. (10 Points) Section 7.4, Exercise 6. Find the area of the portion of the unit
sphere that is cut out by the cone

z ≥
√
x2 + y2.

Solution. The intersection of the unit sphere and the cone z =
√
x2 + y2 is

found by solving the equations

x2 + y2 + z2 = 1 and x2 + y2 − z2 = 0

(with z ≥ 0), which is easily done by subtracting these two equations. This
gives the circle described by z = 1/

√
2 and x2 + y2 = 1/2, as in the Figure.

We are to find the area of the surface above this circle.
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Notice that the triangle AOB has two sides of length 1/
√

2, and hypotenuse of
length 1, so the vertex angle AOB is π/4. Using this geometry and spherical
coordinates, we find that a parametrization is

x = sinφ cos θ

y = sinφ sin θ

z = cosφ,

for 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
4 . We find that

Area =

∫ 2π

0

∫ π
4

0
sinφdφ dθ

=

(
1−
√

2

2

)
2π

= (2−
√

2)π.

4. (10 Points) Section 7.5, Exercise 2. Evaluate∫∫
S
xyz dS

where S is the triangle with vertices (1, 0, 0), (0, 2, 0) and (0, 1, 1).

Solution. The triangle is contained in a plane whose equation is of the form
ax+by+cz+d = 0. Since (1, 0, 0) lies on it, a+d = 0, so a = −d. Since (0, 2, 0)
is on it, b = −1

2d. Since (0, 1, 1) is on it, b + c = −d, so c = −d + 1
2d = −1

2d.
Letting d = −2, we get 2x + y + z − 2 = 0 i.e., the equation of the plane is
given by

2x+ y + z = 2,

as in the Figure.
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A normal vector is obtained from the coefficients as (2, 1, 1), so a unit normal
is

n =
1√
6

(2i + j + k).

The domain D in the xy plane is the triangle with vertices (1, 0), (0, 2) and
(0, 1), as in the Figure. It can be regarded as a graph: z = 2− 2x− y

(0,2)

(0,1)

(1,0)

D

z

y

x

x

y

(0,1,1)

(1,0,1) (0,2,0)

D

S

Now

dS =
dx dy

n · k
=
√

6 dx dy,

and so ∫∫
S
f dS =

∫∫
D
xy(2− 2x− y)

√
6 dx dy

=
√

6

∫ 1

0

∫ 2(1−x)

1−x
[2(x− x2)y − xy2]dy dx

Carrying out the y-integration gives∫∫
S
f dS =

√
6

∫ 1

0

(
2(x− x2)y

2

2
− xy3

3

)∣∣∣∣2(1−x)
1−x

dx

=
√

6

∫ 1

0

[
2x(1− x)

(
[2(1− x)]2

2
− [1− x]2

2

)
−x

3
([2(1− x)]3 − (1− x)3)

]
dx

=
√

6

∫ 1

0

2

3
x(1− x)3dx =

√
6

∫ 1

0

2

3
· 1

4
(1− x)4dx =

√
6

30
,

where the last steps were done using integration by parts.

5. (10 Points) Section 7.6, Exercise 7. Calculate the integral

∫∫
S
F · dS, where

S is the surface of the half-ball x2 + y2 + z2 ≤ 1, z ≥ 0, and where

F = (x+ 3y5)i + (y + 10xz)j + (z − xy)k.
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Solution. Since S is the surface of the half ball x2 + y2 + z2 ≤ 1, z ≥ 0,
S = H ∪D, where H is the upper hemisphere and D is the disk. Hence∫∫

S
F · dS =

∫∫
H
F · dS +

∫∫
D
F · dS.

(i) In spherical coordinates on the unit sphere,

r = (sinφ cos θ)i + (sinφ sin θ)j + (cosφ)k,

where, for the hemisphere H, 0 ≤ φ ≤ π
2 , 0 ≤ θ ≤ 2π. The vector area

element on the unit sphere is

dS = r sinφdφ dθ

and therefore,∫∫
H
F · dS =

∫ π
2

0

∫ 2π

0
F(r) · dS

=

∫ π
2

0

∫ 2π

0
(1 + 3 sin6 φ cos θ sin5 θ

+ 9 sin2 φ cosφ cos θ sin θ) sinφdθ dφ

=

∫ π
2

0
(2π + 0 + 0) sinφdφ = 2π.

(ii) In the case of the disk D, we have z = 0, x2 + y2 ≤ 1. Since we want the
unit normal to point outward from the half ball, we should use n = −k.
So ∫∫

D
F · dS =

∫∫
D

(x+ 3y5, y,−xy) · (0, 0,−1)dx dy

=

∫∫
D
xy dx dy = 0.

Therefore, ∫∫
S
F · dS = 2π.

6. (10 Points) Section 7.6, Exercise 15. Let the velocity field of a fluid be
given by v = i + xj + zk in meters/second. How many cubic meters of fluid
per second are crossing the surface x2 + y2 + z2 = 1, z ≥ 0? (Distances are in
meters.)

Solution. Here, v · dS = v · n dS and n = xi + yj + zk, so

v · n = x+ xy + z2.
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By symmetry, the integrals of x and of xy vanish. Thus, the flux is∫∫
S
v · dS =

∫∫
S
z2dS.

Using spherical coordinates, z = cosφ, so we get∫ π/2

φ=0

∫ 2π

θ=0
cos2 φ sinφdθ dφ = −2π

cos3 φ

3

∣∣∣∣π/2
0

=
2π

3
.

7. (15 Points) Section 7.6, Exercise 18. If S is the upper hemisphere

{(x, y, z) | x2 + y2 + z2 = 1, z ≥ 0}

oriented by the normal pointing out of the sphere, compute∫∫
S
F · dS

for parts (a) and (b).

(a) F(x, y, z) = xi + yj

(b) F(x, y, z) = yi + xj

(c) for each of the vector fields above, compute∫∫
S

(∇× F) · dS and

∫
C
F · dS,

where C is the unit circle in the xy plane traversed in the counterclock-
wise direction (as viewed from the positive z axis). (Notice that C is the
boundary of S. The phenomenon illustrated here will be studied more
thoroughly in the next chapter, using Stokes’ theorem.)

Solution.

(a) The vector area element on the unit sphere is

dS = r sinφdφ dθ

and therefore, ∫∫
S
F · dS =

∫ π
2

0

∫ 2π

0
F(r) · dS

=

∫ π
2

0

∫ 2π

0
sin3 φdθ dφ

= 2π

∫ π
2

0
(1− cos2 φ) sinφdφ

= 2π · 2

3
=

4π

3
.
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(b) Similarly, ∫∫
S
F · dS =

∫ π
2

0

∫ 2π

0
2 sin3 φ cos θ sin θ dθ dφ = 0.

(c) The curl of the vector field in (a) is given by

∇× F =

∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

x y 0

∣∣∣∣∣∣∣∣∣ = 0

and that for the vector field in (b) is

∇× F =

∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z

y x 0

∣∣∣∣∣∣∣∣∣ = 0.

Therefore, ∫∫
S
∇× F · dS = 0

in each case. As for ∫
C
F · dS,

we can use c(t) = (cos t, sin t, 0) for the parametrization of C. Then in
each case of (a) and (b), we have∫

C
F · dS =

∫ 2π

0
(cos t, sin t, 0)(− sin t, cos t, 0)dt = 0∫

C
F · dS =

∫ 2π

0
(sin t, cos t, 0)(− sin t, cos t, 0)dt = 0.


