
1

Mathematics 1c: Solutions, Homework Set 6
Due: Monday, May 17 at 10am.

1. (10 Points) Section 6.1, Exercise 6 Let D∗ be the parallelogram with vertices

(−1, 3), (0, 0), (2,−1) and (1, 2)

and D be the rectangle D = [0, 1]× [0, 1]. Find a transformation T such that
D is the image set of D∗ under T .

Solution. We are required to find a linear mapping T with T (D∗) = D. To
do this, we seek a linear mapping T (u, v) = (x, y) of the form

x = au+ bv and y = cu+ dv.

We require vertices to be mapped to vertices in the same clockwise order and
observe that we already have T (0, 0) = (0, 0). Thus, we suppose T (1, 2) =
(1, 1), T (−1, 3) = (1, 0) and T (2,−1) = (0, 1). This gives us three sets of
equations

1 = a+ 2b and 1 = c+ 2d

1 = −a+ 3b and 0 = −c+ 3d

0 = 2a− b and 1 = 2c− d.

From the last line, b = 2a and so from the first equation, we find a = 1/5, b =
2/5 and similarly from the second line, c = 3d and so from one of the other
two equations for c, d, we get c = 3/5, d = 1/5. Therefore, we conclude that
T is given by T (u, v) = (u+ 2v, 3u+ v)/5.

2. (10 Points) Section 6.2, Exercise 6 Define T (u, v) = (u2 − v2, 2uv). Let
D∗ be the set of (u, v) with u2 + v2 ≤ 1, u ≥ 0, v ≥ 0. Find T (D∗) = D and
evaluate ∫∫

D
dx dy.

Solution. One trick to finding D is to use the fact that the boundary of D∗

gets mapped into the boundary of D (assuming that T is one to one). Thus,
let us first show that T is one to one. There are two ways to do this, one using
polar coordinates, or the other by algebraic brute force. Taking the brute force
route, assume that u2−v2 = x, 2uv = y. We must show that there is a unique
(u, v) ∈ D∗ solving this equation. Squaring and adding we get that

(u2 + v2)2 = (u2 − v2)2 + 4u2v2 = x2 + y2.

Therefore u2 + v2 =
√
x2 + y2. But u2 − v2 = x and thus

u2 =
1

2

(
x+

√
x2 + y2

)
≥ 0
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and clearly there is only one u ≥ 0 solving this equation. Similarly

v2 =
1

2

(√
x2 + y2 − x

)
≥ 0

and there is only one v ≥ 0 that solves this equation. Thus, T is one to one.

The set D∗ is the 1st quadrant of the unit circle. The interval [0, 1] on the
u axis (v = 0) is mapped onto the interval [0, 1] on the x axis. The interval
u = 0, 0 ≤ v ≤ 1 on the v axis is mapped onto the interval [−1, 0] on the
x axis. We claim that the circle u2 + v2 = 1 gets mapped onto the circle
x2 + y2 = 1, y ≥ 0. Perhaps the simplest way to see this is to use polar
coordinates. Let u = cos θ, v = sin θ, 0 ≤ θ ≤ π/2. Then

(x, y) = (cos2 θ sin2 θ, 2 cos θ sin θ) = (cos 2θ, sin 2θ)

which, as θ varies between 0 and π/2, traces out the unit circle in the 1st and
2nd quadrants of the xy plane. Therefore, the image of D∗ is the region D
bounded by the semi circle x2 + y2 = 1, y ≥ 0 and the x axis.

Aside: For those students familiar with complex numbers, this transformation
is the mapping which sends z = x+iy (where i =

√
−1) to z2. From properties

of complex multiplication, one sees that T “opens” the wedge D∗ into the half
disk D.

Computing the Jacobian determinant, we get

∂(x, y)

∂(u, v)
=

[
2u −2v
2v 2u

]
= 4(u2 + v2)

which is zero at (0, 0). Therefore∫∫
D
dx dy = 4

∫∫
D∗

(u2 + v2)du dv.

Introducing polar coordinates u = r cos θ, v = r sin θ, this integral is equal to
the iterated integral

4

∫ π/2

0

∫ 1

0
r2 · r dr dθ = 4

∫ π/2

0

[
r4

4

]1
0

dθ =

∫ π/2

0
dθ = π/2.

3. (10 Points) Section 6.2, Exercise 8 Calculate∫∫
R

dx dy

x+ y
,

where R is the region bounded by x = 0, y = 0, x + y = 1, and x + y = 4 by
using the mapping T (u, v) = (u− uv, uv).
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Solution. The region D, bounded by x = 0, y = 0, x+ y = 1 and x+ y = 4,
is a quadrilateral. If x = u−uv and y = uv, then u = x+y, and v = y/(x+y).
Therefore, away from the v axis (u = 0), the mapping is one to one. (Note that
any portion of the v axis is mapped to (0, 0).) The pre-image of the interval
y = 0, 1 ≤ x ≤ 4 is the interval 1 ≤ u ≤ 4, v = 0. The pre-image of the line
x+ y = 4, where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4, is the line described by u = 4, 0 ≤
v ≤ 1. The pre-image of the line x + y = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is the line
u = 1, 0 ≤ v ≤ 1 and finally, the pre-image of the interval x = 0, 1 ≤ y ≤ 4,
is the line v = 1, 1 ≤ u ≤ 4. Thus, D∗ is the rectangle [1, 4] × [0, 1] in the uv
plane, and T : D∗ → D is one to one. The Jacobian determinant is given by

∂(x, y)

∂(u, v)
=

[
1− v −u
v u

]
= u.

Therefore, ∫∫
R

dx dy

x+ y
=

∫∫
D∗

u

u
du dv =

∫ 4

1

∫ 1

0
dv du = 3.

4. (10 Points) Section 6.3, Exercise 4 Find the center of mass of the region
between y = 0 and y = x2, where 0 ≤ x ≤ 1/2.

Solution. We assume the material is uniform, so δ = constant. This con-
stant cancels in the center of mass formulas, so we can assume that δ = 1.
The formula for the center of mass then gives

x̄ =

∫∫
x dA∫∫
dA

=

∫ 1/2
0

∫ x2
0 x dy dx∫ 1/2

0

∫ x2
0 dy dx

.

The numerator is∫ 1/2

0

∫ x2

0
x dy dx =

∫ 1/2

0
(xy)|x

2

0 dx =

∫ 1/2

0
x3 dx =

1

4

(
1

2

)4

=
1

26
=

1

64
,

while the denominator is∫ 1/2

0

∫ x2

0
dy dx =

∫ 1/2

0
x2 dx =

(
1

3
x3
)∣∣∣∣1/2

0

=
1

24
.

Therefore, x̄ = 24/64 = 3/8. Similarly,

ȳ =

∫ 1/2
0

∫ x2
0 y dy dx∫ 1/2

0

∫ x2
0 dy dx

= 24

∫ 1/2

0

(
y2

2

)∣∣∣∣x2
0

dx = 12

∫ 1/2

0
x4 dx =

3

40
.

Thus, the center of mass is located at the point
(
3
8 ,

3
40

)
.

5. (10 Points) Section 6.4, Exercise 8 Show that the integral∫ 1

0

∫ a

0

x√
a2 − y2

dy dx

exists, and compute its value. (You may assume that a is a positive constant).
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Solution. We write∫ 1

0

∫ a

0

x√
a2 − y2

dy dx = lim
ε→0

∫ 1

0

∫ a−ε

0

x√
a2 − y2

dy dx

= lim
ε→0

∫ a−ε

0

1√
a2 − y2

{∫ 1

0
x dx

}
dy = lim

ε→0

1

2

∫ a−ε

0

dy√
a2 − y2

.

Let y = a sin θ, so that dy = a cos θdθ. Substituting,∫
dy√
a2 − y2

=

∫
a cos θdθ

a cos θ
=

∫
dθ = θ = sin−1

(y
a

)
.

Consequently,∫ a−ε

0

dy√
a2 − y2

=
[
sin−1

y

a

]a−ε
0

= sin−1
(
a− ε
a

)
.

Thus,

lim
ε→0

1

2

∫ a−ε

0

dy√
a2 − y2

= lim
ε→0

1

2
sin−1

(
a− ε
a

)
=

1

2
sin−1(1) =

π

4
.

6. (10 Points) Review Exercise 4b for Chaper 6 Perform a change of vari-
ables to cylindrical coordinates for∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ √4−x2−y2

−
√

4−x2−y2
xyz dz dx dy.

Solution. Using cylindrical coordinates,∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ √4−x2−y2

−
√

4−x2−y2
xyz dz dx dy

=

∫ 2π

0

∫ 1

0

∫ √4−r2
−
√
4−r2

r · r2 cos θ sin θz dz dr dθ

=

∫ 2π

0

∫ 1

0

∫ √4−r2
−
√
4−r2

r3 cos θ sin θz dz dr dθ.

7. (10 Points) Section 7.1, Exercise 4(a) Evaluate the path integral of f(x, y, z) =
x cos z along the path c : t 7→ ti + t2j, t ∈ [0, 1].

Solution. The path integral is∫
c
f ds =

∫ 1

0
(t cos 0)

√
1 + 4t2dt

=

∫ 1

0
t(1 + 4t2)1/2 dt
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This is readily integrated using the substitution u = 1 + 4t2 and we get

1

12

[(
1 + 4t2

)3/2]∣∣∣1
0

=
1

12

(
53/2 − 1

)
.

8. (10 Points) Section 7.2, Exercise 2 Evaluate each of the following integrals:

(a)

∫
c
x dy − y dx, c(t) = (cos t, sin t), 0 ≤ t ≤ 2π

(b)

∫
c
x dx+ y dy, c(t) = (cosπt, sinπt), 0 ≤ t ≤ 2

(c)

∫
c
yz dx+ xz dy + xy dz, where c consists of straight-line segments join-

ing (1, 0, 0) to (0, 1, 0) to (0, 0, 1)

(d)

∫
c
x2 dx− xy dy + dz, where c is the parabola z = x2, y = 0 from (−1, 0, 1)

to (1, 0, 1).

Solution. (a) By definition,∫
c
x dy − y dx =

∫ 2π

0
[cos t(cos t dt)− (sin t)(− sin t dt)]

=

∫ 2π

0

[
cos2 t+ sin2 t

]
dt =

∫ 2π

0
dt = 2π.

(b) Here,∫
c
x dx+ y dy =

∫ 2

0
(cosπt)(−π sinπt)dt+

∫ 2

0
(sinπt)(π cosπt)dt

=

[
cos2 πt

2

]∣∣∣∣2
0

+

[
sin2 πt

2

]∣∣∣∣2
0

=
1

2

[
cos2 πt+ sin2 πt

]∣∣2
0

=
1

2
[1]|20 = 0.

(c) First we write∫
c
yz dx+ xz dy + xy dz =

2∑
i=1

∫
ci

yz dx+ xz dy + xy dz

where c1 is the straight line path from (1, 0, 0) to (0, 1, 0) and c2 is the straight
line path from (0, 1, 0) to (0, 0, 1).

We can parametrize c1 by c1(t) = (1 − t, t, 0), 0 ≤ t ≤ 1, and c2 by c2(t) =
(0, 1− t, t), 0 ≤ t ≤ 1. Therefore∫

c1

yz dx+ xz dy + xy dz =

∫ 1

0
0 dt = 0∫

c2

yz dx+ xz dy + xy dz =

∫ 1

0
0 dt = 0.
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Thus, the given integral is zero.

(d) This parabola may be parameterized by x = t, z = t2, y = 0, where
−1 ≤ t ≤ 1. Therefore,∫

c
x2dx− xy dy + dz =

∫ 1

−1
(t2dt+ 2t dt)

=

∫ 1

−1
(t2 + 2t)dt =

[
t3

3
+ t2

]∣∣∣∣1
−1

=
2

3
.


