Mathematics 1c: Solutions, Homework Set 5

Due: Monday, May 10th at 10am.

1. (10 Points) Section 5.1, Exercise 4 Using Cavalieri's principle, compute the volume of the structure shown in Figure 5.1 .11 of the textbook; each section is a rectangle of length 5 and width 3.

Solution. By Cavalieri's principle the volume of the solid in Figure 5.1.11 is the same as that of a rectangular parallelepiped of dimensions $3 \times 5 \times 7$ or $(3)(5)(7)=105$.
2. (20 Points) Section 5.2, Exercise 8 Let f be continuous on $R=[a, b] \times[c, d]$. For $a<x<b$, and $c<y<d$, define

$$
F(x, y)=\int_{a}^{x} \int_{c}^{y} f(u, v) d v d u
$$

Show that

$$
\frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial^{2} F}{\partial y \partial x}=f(x, y)
$$

Use this example to discuss the relationship between Fubini's Theorem and the equality of mixed partial derivatives.

Solution. By the Fundamental Theorem of Calculus

$$
\frac{\partial F}{\partial x}(x, y)=\int_{c}^{y} f(x, v) d v
$$

and applying it once again, we have

$$
\frac{\partial^{2} F}{\partial y \partial x}(x, y)=f(x, y)
$$

In the reverse order, we first apply Fubini's Theorem and then the Fundamental Theorem of Calculus twice. Thus

$$
F(x, y)=\int_{c}^{y} \int_{a}^{x} f(u, v) d u d v
$$

and

$$
\frac{\partial F}{\partial y}(x, y)=\int_{a}^{x} f(u, y) d u
$$

and then

$$
\frac{\partial^{2} F}{\partial x \partial y}(x, y)=f(x, y)
$$

Fubini's Theorem is, in a sense, the integral version of the theorem on the equality of mixed partials. If

$$
\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x \partial y} \quad \text { and } \quad \frac{\partial^{2} F}{\partial y \partial x}
$$

are all continuous, then Fubini's Theorem, and the Fundamental Theorem of Calculus imply that

$$
\begin{aligned}
\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} F}{\partial x \partial y}(u, v) d v d u & =\int_{c}^{y} \int_{a}^{x} \frac{\partial^{2} F}{\partial x \partial y}(u, v) d u d v \\
& =\int_{c}^{y}\left[\frac{\partial F}{\partial y}(x, v)-\frac{\partial F}{\partial y}(a, v)\right] d v \\
& =F(x, y)-F(x, c)-F(a, y)+F(a, c) .
\end{aligned}
$$

A similar calculation of the iterated integral

$$
\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} F}{\partial y \partial x}(u, v) d v d u
$$

gives the same answer and thus

$$
\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} F}{\partial y \partial x}(u, v) d v d u=\int_{a}^{x} \int_{c}^{y} \frac{\partial^{2} F}{\partial x \partial y}(u, v) d v d u
$$

This in turn implies that

$$
\iint_{R} \frac{\partial^{2} F}{\partial x \partial y} d A=\iint_{R} \frac{\partial^{2} F}{\partial y \partial x} d A
$$

for all rectangles R. Since R is arbitrary, this implies that

$$
\frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial^{2} F}{\partial y \partial x} .
$$

This shows how one may deduce equality of mixed partials assuming Fubini's Theorem has been proved.
3. (10 Points)Section 5.3, Exercise 2(a). Evaluate and sketch the region of integration

$$
\int_{-3}^{2} \int_{0}^{y^{2}}\left(x^{2}+y\right) d x d y
$$

Solution. The region of integration is shown in the Figure.

This region is x-simple but not y-simple, since it is bounded on the left and right by graphs, but not top and bottom (unless we broke it into two pieces, one above the x-axis and one below. The integral is

$$
\begin{aligned}
\int_{-3}^{2}\left(\frac{x^{3}}{3}+\left.x y\right|_{x=0} ^{x=y^{2}}\right) d y & =\int_{-3}^{2}\left(\frac{y^{6}}{3}+y^{3}\right) d y=\frac{y^{7}}{21}+\left.\frac{y^{4}}{4}\right|_{-3} ^{2} \\
& =\frac{2^{7}}{21}+\frac{3^{7}}{21}+\frac{2^{4}}{4}-\frac{3^{4}}{4}=\frac{2^{7}+3^{7}}{21}-\frac{65}{4} .
\end{aligned}
$$

4. (10 Points)Section 5.4, Exercise 2(a). Find

$$
\int_{-1}^{1} \int_{|y|}^{1}(x+y)^{2} d x d y
$$

Solution. Changing the order of integration (see the Figure) we see that this iterated integral is equal to

$$
\begin{aligned}
\int_{0}^{1} \int_{-x}^{x}(x+y)^{2} d y d x & =\frac{1}{3} \int_{0}^{1}\left[(x+y)^{3}\right]_{-x}^{x} d x \\
& =\frac{8}{3} \int_{0}^{1} x^{3} d x=\frac{2}{3}
\end{aligned}
$$

5. (10 Points)Section 5.4, Exercise 8. Compute the double integral

$$
\iint_{D} f(x, y) d A
$$

where

$$
f(x, y)=y^{2} \sqrt{x}
$$

and D is the set of (x, y) where $x>0, y>x^{2}$, and $y<10-x^{2}$.

Solution. This integral is equal to the iterated integral

$$
\begin{aligned}
\int_{0}^{\sqrt{5}} \int_{x^{2}}^{10-x^{2}} y^{2} \sqrt{x} d y d x & =\left.\frac{1}{3} \int_{0}^{\sqrt{5}}\left[y^{3} x^{1 / 2}\right]\right|_{x^{2}} ^{10-x^{2}} d x \\
& =\frac{1}{3} \int_{0}^{\sqrt{5}}\left(10-x^{2}\right)^{3} x^{1 / 2} d x-\frac{1}{3} \int_{0}^{\sqrt{5}} x^{13 / 2} d x
\end{aligned}
$$

The second integral equals

$$
-\frac{1}{3}\left(\frac{2}{15}\right)(\sqrt{5})^{15 / 2}
$$

To slightly simplify the first integral set $u^{2}=x$ so that $2 u d u=d x$. Changing variables, the first integral equals

$$
\begin{aligned}
& \frac{2}{3} \int^{5^{1 / 4}}(10\left.-u^{4}\right)^{3} u^{2} d u \\
& \quad= \frac{2}{3} \int^{5^{1 / 4}}\left[1000 u^{2}-100 u^{6}+10 u^{10}-u^{14}\right] d u \\
& \quad=\frac{2}{3}\left[1000 \frac{u^{3}}{3}-100 \frac{u^{7}}{7}+\frac{10}{11} u^{11}-\frac{u^{15}}{15}\right]_{0}^{5^{1 / 4}} \\
& \quad=\frac{2}{3}\left[\frac{1000}{3} 5^{3 / 4}-\frac{100}{7} 5^{7 / 4}+\frac{10}{11} 5^{11 / 4}-\frac{5^{15 / 4}}{15}\right] .
\end{aligned}
$$

6. (10 Points)Section 5.5, Exercise 15. Evaluate

$$
\iiint_{W}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

where W is the region bounded by $x+y+z=a$ (where $a>0$ is a given constant), $x=0, y=0$, and $z=0$.

Solution. The set W is defined by the inequalities

$$
x \geq 0, \quad y \geq 0, \quad z \geq 0, \quad \text { and } \quad 0 \leq x+y+z \leq a
$$

and is shown in the Figure.

Thus,

$$
\begin{aligned}
& \iiint_{W}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z \\
& \quad=\int_{0}^{a} d x \int_{0}^{a-x} d y \int_{0}^{a-x-y} d z\left(x^{2}+y^{2}+z^{2}\right) \\
& \quad=\int_{0}^{a} d x\left(\int_{0}^{a-x}\left[\left(x^{2}+y^{2}\right)(a-x-y)+\frac{1}{3}(a-x-y)^{3}\right] d y\right) \\
& \quad=\int_{0}^{a}\left[x^{2}(a-x)^{2}+\frac{1}{12}(a-x)^{4}-\frac{1}{2} x^{2}(a-x)^{2}+\frac{1}{12}(a-x)^{4}\right] d x \\
& \quad=\frac{1}{2} \int_{0}^{a}\left(a^{2} x^{2}-2 a x^{3}+x^{4}\right) d x+\left.\frac{1}{60}(x-a)^{5}\right|_{0} ^{a}+\left.\frac{1}{60}(x-a)^{5}\right|_{0} ^{a} \\
& \quad=\frac{1}{6} a^{5}-\frac{1}{4} a^{5}+\frac{1}{10} a^{5}+\frac{1}{60} a^{5}+\frac{1}{60} a^{5}=\frac{1}{20} a^{5} . \diamond
\end{aligned}
$$

7. (10 Points)Section 5.5, Exercise 16. Evaluate

$$
\iiint_{W} z d x d y d z
$$

where W is the region bounded by the planes $x=0, y=0, z=0, z=1$, and the cylinder $x^{2}+y^{2}=1$, with $x \geq 0, y \geq 0$.

Solution. Since W is defined by the inequalities

$$
x^{2}+y^{2} \leq 1, \quad x \geq 0, \quad y \geq 0, \quad \text { and } \quad 0 \leq z \leq 1,
$$

we have

$$
\iiint_{W} z d x d y d z=\iint_{\substack{x^{2}+y^{2} \leq 1 \\ x \geq 0, y \geq 0}} d x d y \int_{0}^{1} z d z=\left.\frac{\pi}{4} \cdot \frac{1}{2} z^{2}\right|_{0} ^{1}=\frac{\pi}{8} . \diamond
$$

