Mathematics 1c: Solutions, Homework Set 4

Due: Monday, April 26 at 10am.

1. (10 Points) Section 4.1, Exercise 14 Show that, at a local maximum or minimum of the quantity $\|\mathbf{r}(t)\|, \mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{r}(t)$.

Solution. Notice first that at the time t where a local maximum or minimum for $\|\mathbf{r}(t)\|$ occurs, a local maximum or minimum for $\|\mathbf{r}(t)\|^{2}=\mathbf{r}(t) \cdot \mathbf{r}(t)$ also occurs. And at those particular t 's, the first derivative of $\|\mathbf{r}(t)\|^{2}$ is equal to zero. Therefore

$$
0=(\mathbf{r}(t) \cdot \mathbf{r}(t))^{\prime}=\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)
$$

which means that $\mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{r}(t)$.
2. (10 Points)Section 4.1, Exercise 18. Let \mathbf{c} be a path in \mathbb{R}^{3} with zero acceleration. Prove that \mathbf{c} is a straight line or a point.

Solution. Write $\mathbf{c}(t)=(x(t), y(t), z(t))$. If $\mathbf{c}^{\prime \prime}(t)=\mathbf{0}$, then $x^{\prime \prime}(t)=y^{\prime \prime}(t)=$ $z^{\prime \prime}(t) \equiv 0$. These equations imply that $x^{\prime}(t)=c_{1}, y^{\prime}(t)=c_{2}$, and $z^{\prime}(t)=c_{3}$, where c_{1}, c_{2}, c_{3} are all constants. Continuing, we see that this implies that $x(t)=c_{1} t+b_{1}, y(t)=c_{2} t+b_{2}, z(t)=c_{3} t+b_{3}$, where b_{1}, b_{2}, b_{3} are all constants. If at least one c_{i} is nonzero, this is the equation of a straight line. If all the c_{i} 's are zero then $(x(t), y(t), z(t))=\left(b_{1}, b_{2}, b_{3}\right)$ a point.
3. (10 Points) Section 4.2, Exercise 4. Compute the arc length of the curve described by

$$
\left(t+1, \frac{2 \sqrt{2}}{3} t^{3 / 2}+7, \frac{1}{2} t^{2}\right)
$$

on the interval $1 \leq t \leq 2$.

Solution. Using the arc length formula,

$$
l=\int_{1}^{2}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{1}^{2} \sqrt{1+2 t+t^{2}} d t=\int_{1}^{2}(t+1) d t=\frac{5}{2}
$$

4. (20 points) Exercise 18. In special relativity, the proper time of a path $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{4}$ with $\mathbf{c}(\lambda)=(x(\lambda), y(\lambda), z(\lambda), t(\lambda))$ is defined to be the quantity

$$
\frac{1}{c} \int_{a}^{b} \sqrt{-\left[x^{\prime}(\lambda)\right]^{2}-\left[y^{\prime}(\lambda)\right]^{2}-\left[z^{\prime}(\lambda)\right]^{2}+c^{2}\left[t^{\prime}(\lambda)\right]^{2}} d \lambda
$$

where c is the velocity of light, a constant. Referring to the Figure, show that, using self-explanatory notation,

$$
\text { proper time }(\mathrm{AB})+\text { proper time }(\mathrm{BC})<\text { proper time }(\mathrm{AC})
$$

(This inequality is a special case of what is known as the twin paradox.)

Solution. We proceed in three steps. First we parametrize the paths.
i Let $\mathrm{A}=(0,0,0,0), \mathrm{B}=\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right), \mathrm{C}=\left(0,0,0, t_{\mathrm{C}}\right)$. Let c_{1}, c_{2}, c_{3} be the paths from A to B, B to C, A to C, respectively. Then

$$
\begin{aligned}
c_{1}(\lambda) & =(1-\lambda)(0,0,0,0)+\lambda\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right) \\
c_{2}(\lambda) & =(1-\lambda)\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right)+\lambda\left(0,0,0, t_{\mathrm{C}}\right) \\
c_{3}(\lambda) & =(1-\lambda)(0,0,0,0)+\lambda\left(0,0,0, t_{\mathrm{C}}\right)
\end{aligned}
$$

ii Denote the proper time of $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$ by T_{AB}, etc., then

$$
T_{\mathrm{AB}}=\frac{1}{c} \int_{0}^{1} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}} d \lambda=\frac{1}{c} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}} .
$$

Similarly, we have

$$
\begin{aligned}
T_{\mathrm{BC}} & =\frac{1}{c} \sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}} \\
T_{\mathrm{AC}} & =\frac{1}{c} \sqrt{c^{2} t_{\mathrm{C}}^{2}}=\frac{1}{c}\left(c t_{\mathrm{C}}\right)
\end{aligned}
$$

iii It is sufficient to show that

$$
\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}+\sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}}<c t_{\mathrm{C}} .
$$

But the above is true if and only if

$$
\sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}}<c t_{\mathrm{C}}-\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}
$$

if and only if

$$
-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}<c^{2} t_{\mathrm{C}}^{2}-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}-2 c t_{\mathrm{C}} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}
$$

if and only if

$$
c t_{\mathrm{B}}>\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}} .
$$

Since the last inequality is clearly true, the claim is proved.
5. (10 points) Section 4.3, Exercise 14. Show that the curve

$$
\mathbf{c}(t)=\left(t^{2}, 2 t-1, \sqrt{t}\right), t>0
$$

is a flow line of the velocity vector field

$$
\mathbf{F}(x, y, z)=(y+1,2,1 / 2 z)
$$

Solution. We must verify that $\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))$. The left hand side is $(2 t, 2,1 /(2 \sqrt{t}))$, while the right side is $\mathbf{F}\left(t^{2}, 2 t-1, \sqrt{t}\right)=(2 t, 2,1 /(2 \sqrt{t}))$. Since we have equality, we have shown that $\mathbf{c}(t)$ is a flow line of \mathbf{F}.
6. (10 points) Section 4.4, Exercise 10. Find the divergence of the vector field $\mathbf{v}(x, y, z)=y \mathbf{i}-x \mathbf{j}$.

Solution.

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}(y)-\frac{\partial}{\partial y}(x)=0 . \diamond
$$

7. (10 Points) Exercise 16. Find the curl of the vector field

$$
\mathbf{F}(x, y, z)=\frac{y z \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}}{x^{2}+y^{2}+z^{2}}
$$

Solution. We take the formal cross product of the ∇ operator with the given vector field to calculate the curl:

$$
\begin{aligned}
\nabla \times \mathbf{F}= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{y z}{r^{2}} & \frac{-x z}{r^{2}} & \frac{x y}{r^{2}}
\end{array}\right| \\
= & {\left[\frac{\partial}{\partial y}\left(\frac{x y}{r^{2}}\right)+\frac{\partial}{\partial z}\left(\frac{x z}{r^{2}}\right)\right] \mathbf{i}-\left[\frac{\partial}{\partial x}\left(\frac{x y}{r^{2}}\right)-\frac{\partial}{\partial z}\left(\frac{y z}{r^{2}}\right)\right] \mathbf{j} } \\
& +\left[\frac{\partial}{\partial x}\left(\frac{-x z}{r^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{y z}{r^{2}}\right)\right] \mathbf{k} \\
= & {\left[\frac{x r^{2}-2 x y^{2}}{\left.r^{4}+\frac{x r^{2}-2 x z^{2}}{r^{4}}\right] \mathbf{i}-\left[\frac{y r^{2}-2 y x^{2}}{r^{4}}-\frac{y r^{2}-2 y z^{2}}{r^{4}}\right] \mathbf{j}}\right.} \\
& -\left[\frac{z r^{2}-2 z x^{2}}{r^{4}}+\frac{z r^{3}-2 z y^{2}}{r^{4}}\right] \mathbf{k} \\
= & \frac{2}{r^{4}}\left(x^{3} \mathbf{i}+\left(y x^{2}-y z^{2}\right) \mathbf{j}+z^{3} \mathbf{k}\right) .
\end{aligned}
$$

Therefore,

$$
\nabla \times \mathbf{F}=\left(\frac{2 x^{3}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{2 y\left(x^{2}-z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{-2 z^{3}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)
$$

