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Mathematics 1c: Solutions, Homework Set 3
Due: Monday, April 19th by 10am.

1. (10 Points) Section 3.1, Exercise 16 Let w = f(x, y) be a function of two
variables, and let

x = u+ v, y = u− v.

Show that
∂2w

∂u∂v
=
∂2w

∂x2
− ∂2w

∂y2
.

Solution. By the chain rule,

∂w

∂v
=
∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

= wx − wy.

Thus,

∂2w

∂u∂v
=

∂

∂u

(
∂w

∂v

)
=

∂

∂u
(wx − wy) =

∂

∂u
wx −

∂

∂u
wy

=
∂wx
∂x
· ∂x
∂u

+
∂wx
∂y
· ∂y
∂u
−
(
∂wy
∂x
· ∂x
∂u

+
∂wy
∂y
· ∂y
∂u

)
= wxx + wxy − (wyx + wyy) = wxx − wyy

i.e.,
∂2w

∂u∂v
=
∂2w

∂x2
− ∂2w

∂y2
.

2. (10 Points) Section 3.1, Exercise 22

(a) Show that the function

g(x, t) = 2 + e−t sinx

satisfies the heat equation: gt = gxx. [Here g(x, t) represents the temper-
ature in a metal rod at position x and time t.]

(b) Sketch the graph of g for t ≥ 0. (Hint: Look at sections by the planes
t = 0, t = 1, and t = 2.)

(c) What happens to g(x, t) as t → ∞? Interpret this limit in terms of the
behavior of heat in the rod.

Solution.

(a) Since g(x, y) = 2 + e−t sinx, then gt = −e−t sinx, gx = e−t cosx, and
gxx = −e−t sinx. Therefore, gt = gxx.

(b) The graph of g and the times t = 0, 1, and 2 is shown in the figure—try
this yourself on the computing site.
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(c) Note that
lim
t→∞

g(x, t) = lim
t→∞

(2 + e−t sinx) = 2

This means that the temperature in the rod at position x tends to be a
constant (= 2) as the time t is large enough.

3. (10 Points) Section 3.2, Exercise 6 Determine the second-order Taylor for-
mula for the function

f(x, y) = e(x−1)
2

cos y

expanded about the point x0 = 1, y0 = 0.

Solution. The ingredients needed in the second-order Taylor formula are
computed as follows:

fx = 2(x− 1)e(x−1)
2

cos y

fy = −e(x−1)2 sin y

fxx = 2e(x−1)
2

cos y + 4(x− 1)2e(x−1)
2

cos y

fxy = −2(x− 1)e(x−1)
2

sin y = fyx

fyy = −e(x−1)2 cos y.

Evaluating the function and these derivatives at the point (1, 0) gives

f(1, 0) = 1

fx(1, 0) = fy(1, 0) = 0

fxx(1, 0) = 2

fxy(1, 0) = fyx(1, 0) = 0 and

fyy(1, 0) = −1.
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Consequently, the second order Taylor formula is

f(h) = 1 + h21 −
1

2
h22 +R2((1, 0),h),

where h = (h1, h2) and where

R2((1, 0),h)

‖h‖
→ 0 as ‖h‖ → 0.

4. (10 Points) Section 3.3, Exercise 7 Find the critical points for the function

f(x, y) = 3x2 + 2xy + 2x+ y2 + y + 4

and determine if they are maxima, minima or saddle points.

Solution. Here,

∂f

∂x
= 6x+ 2y + 2,

∂f

∂y
= 2x+ 2y + 1.

We have
∂f

∂x
= 0,

∂f

∂y
= 0

when x = y = −1/4. Therefore, the only critical point is (−1/4,−1/4). The
second derivative matrix at this point is[

6 2
2 2

]
The diagonal determinants are both positive and so the matrix is positive
definite and we have a local minimum. This is confirmed by the figure.

5. (10 Points) Section 3.3, Exercise 25 Write the number 120 as a sum of three
non-negative numbers so that the sum of the products taken two at a time is
a maximum.
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Solution. Let the three numbers be x, y, z. Thus,

x+ y + z = 120, z = 120− x− y.

We want to find the maximum value for

S(x, y) = xy + yz + xz = xy + (x+ y)(120− x− y)

= −x2 − xy − y2 + 120x+ 120y.

The maximum must exist by Theorem 7 on page 220. To locate it, we use the
first derivative test; we differentiate to get

∂S

∂x
= −2x− y + 120,

∂S

∂y
= −x− 2y + 120.

These partial derivatives vanish when x = y = 40, in which case z = 120 −
(x+ y) = 40. Therefore, when x = y = z = 40 is the only critical point.

We must examine the extreme, or boundary, cases in which either x = 0, x =
120, y = 0, y = 120, z = 0, or z = 120 separately. For example, if x = 0
then S(x, y) = −y2 + 120y which has a maximum (from one variable calculus)
at y = 60 in which case we also have z = 60 and so S = 60 × 60 = 3, 600.
However, at the point x = y = z = 40, S has the value 3 × 40 × 40 = 4, 800,
which is greater. Likewise one checks that the other boundary values also
lead to smaller values, so the global maximum is at the critical point where
x = y = z = 40.

6. (10 Points) Section 3.4, Exercise 2 Find the extrema of f(x, y) = x − y
subject to the constraint x2 − y2 = 2.

Solution. By the method of Lagrange multipliers, we write the constraint
as g = 0, where g(x, y) = x2 − y2 − 2 and then write the Lagrange multiplier
equations as ∇f = λ∇g. Thus, we get

1 = λ · 2x
1 = λ · 2y

x2 − y2 − 2 = 0.

First of all, the first two equations imply that x 6= 0 and y 6= 0. Hence we
can eliminate λ, giving x = y. From the last equation this would imply that
2 = 0. Hence there are no extrema.

7. (10 Points) Section 3.4, Exercise 20 A light ray travels from point A to
point B crossing a boundary between two media (see Figure 3.4.7 of the text).
In the first medium its speed is v1 and in the second v2. Show that the trip is
made in minimum time when Snell’s law holds:

sin θ1
sin θ2

=
v1
v2
.
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Solution. This is a one variable minimization problem. Let (p, q) denote
the coordinates of point A and (l,m) those of point B. Then the total time
for the light ray to go from A to B after being refracted at a point x on the
x-axis is

f(x) =
1

v1

√
(x− p)2 + q2 +

1

v2

√
(l − x)2 +m2.

There must be a global minimum on the interval [p, l] by Theorem 7 on page
220. If the minimum occurs at a point x0 satisfying p < x0 < l, then f ′(x0) = 0
or

1

v1

x0 − p√
(x0 − p)2 + q2

− 1

v2

l − x0√
(l − x0)2 +m2

= 0.

Rearranging the terms, we obtain:

x0 − p√
(x0 − p)2 + q2

/
l − x0√

(l − x0)2 +m2
=
v1
v2

or
sin θ1
sin θ2

=
v1
v2
.

This equation shows that there is only one critical point in the open interval
where p < x0 < l and that Snell’s law holds.

However, we need to make sure that the minimum does not occur at the
endpoints. If you don’t see a way to do this in general, you can always give a
partial answer by choosing values for the velocities and the two endpoints and
drawing a graph of f , as in the following figure with p = 1, q = 1, v1 = 1, v2 =
1/2, l = 2,m = −2:

It is clear from this example that the minimum is not at an endpoint. To
conclude this more generally, we compute the second derivative of the function
f(x) to get (after a little algebra):

f ′′(x) =
1

v1

q2

[(x− p)2 + q2]3/2
+

1

v2

m2

[(l − x)2 +m2]3/2

The thing to notice about this expression is that (barring the degenerate case
in which both q and m vanish and the velocities are assumed to be non-zero)
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each term is positive and so the function f(x) is convex upwards (consistent
with the figure) and thus the minimum cannot occur at the endpoints, so must
occur in the interior of the interval.

8. (10 Points) Section 3.4, Exercise 22 Let P be a point on a surface S in R3

defined by the equation f(x, y, z) = 1, where f is of class C1. Suppose that P
is a point where the distance from the origin to S is maximized. Show that the
vector emanating from the origin and ending at P is perpendicular to S.

Solution. We want to maximize the function g(x, y, z) = x2 + y2 + z2

subject to the constraint f(x, y, z) = 1. Suppose this maximum occurs at
P = (x0, y0, z0), then by the method of Lagrange multipliers we have the
equations

2x0 = λ {∇f(x0, y0, z0)}1
2y0 = λ {∇f(x0, y0, z0)}2
2z0 = λ {∇f(x0, y0, z0)}3

where {∇f(x0, y0, z0)}i denotes the ith component of ∇f(x0, y0, z0), 1 ≤ i ≤ 3.
If v = (x0, y0, z0) is the vector from the origin ending at P, then these equations
say that v =

(
λ
2

)
· ∇f(x0, y0, z0). But ∇f(x0, y0, z0) is perpendicular to S at

P, and since v is a scalar multiple of ∇f(x0, y0, z0) it is also perpendicular to
S at P.


