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Mathematics 1c: Solutions to homework Set 1

1. (10 Points) Using the computing site or otherwise, draw the graphs of the
following functions:

(a) f(x, y) = 3(x2 + 2y2)e−x
2−y2 ; Tip: On the computing site use E to take

the exponent and there is no need to type a * for multiplication; we
suggest taking x and y between −2 and 2.

(b) f(x, y) = (x3 − 3x)/(1 + y2)

Indicate some key features of these graphs, such as the location of the maxima
and minima, important sections, etc

Solutions.

(a) The graph is shown in the accompanying figure:

As we see this function has one minimum at the center, two maxima
and two saddle points. Interesting sections would be obtained by slicing
the graph with planes parallel to the two axes. Interesting level sets are
obtained by cutting the graph with horizontal planes at various heights.

The level sets, computed using the computing site are shown in the next
figure.
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(b) The graph is shown in the accompanying figure:

Perhaps the most interesting section is obtained by cutting the graph
using the vertical plane y = 0. Level curves are obtained using horizon-
tal planes and these are distorted circles surrounding the maximum and
minimum.

2. (10 Points) Section 2.1, parts of Exercises 15, 18. Sketch the zero level set
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of the function f(x, y, z) = xy + yz and the level set for c = 1 of the function
f(x, y) = max(|x|, |y|).

Solutions. Setting f(x, y, z) = xy + yz = c = 0, we have

(x+ z)y = 0, so that either x+ z = 0, or y = 0.

The level set consists of the two planes shown in shown in the Figure.

x+z = 0

z

y = 0x

y

Notice that f(−1, 1) = 1, f(1, 1) = 1, f(−1,−1) = 1 and f(−1, 1) = 1that
f(1,−1) = 1, so these 4 points are on the level set f = 1; they form the
vertices of a square. The straight line joining the points (−1, 1) and (1, 1) is
the line (x, y) = (t, 1), −1 ≤ t ≤ 1. The value of f along this line is also 1, as
is the value of f along the line segments joining the other vertices. This forms
the level set as in the figure.
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3. (15 Points) Section 2.2, Exercise 12. Compute the following limits, if they
exist

(a) lim
x→0

sin 2x− 2x

x3
.

(b) lim
(x,y)→(0,0)

sin 2x− 2x+ y

x3 + y
.

(c) lim
(x,y,z)→(0,0,0)

2x2y cos z

x2 + y2
.

Solution. (a) By l’Hopital’s rule,

lim
x→0

sin 2x− 2x

x3
= lim

x→0

2 cos 2x− 2

3x2

= lim
x→0

−4 sin 2x

6x
(again by l’Hopital)

= −
(

4

3

)
lim
x→0

sin 2x

2x
= −4

3

since

lim
θ→0

sin θ

θ
= 1.

(b) From (a), for y = 0

sin 2x− 2x

x3
approaches − 4

3

as (x, 0) approaches (0, 0). Setting y = 2x, we see that

sin 2x− 2x+ y

x3 + y
=

sin 2x

x3 + 2x
=

sin 2x

2x

(
2

x2 + 2

)
and hence

lim
(x,2x)→0

sin 2x− 2x+ y

x3 + y
= lim

x→0

sin 2x

2x
· 2

x2 + 2
= 1 · 1 = 1.

Therefore,
sin 2x− 2x+ y

x3 + y

has two different limits along two different rays approaching the origin (0, 0),
and consequently

lim
(x,y)→(0,0)

sin 2x− 2x+ y

x3 + y

does not exist.
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(c) We have

lim
(x,y,z)→(0,0,0)

2x2y cos z

x2 + y2
= lim

(x,y)→(0,0)

2xy

x2 + y2
x = 0

To demonstrate this last limit, lets us first show that the following inequality
holds:

|2xy|
x2 + y2

≤ 1. (0.1)

This inequality (0.1) holds by the following reasoning: first, x2 + y2 ± 2xy =
(x ± y)2 ≥ 0 which we can rewrite as x2 + y2 ≥ |2xy|. Thus, assuming that
(x, y) 6= (0, 0), and dividing x2 + y2 ≥ |2xy| by x2 + y2 gives the required
relation (0.1).

This inequality shows that
∣∣∣ 2xy
x2+y2

x
∣∣∣ lies between 0 and |x|. Thus as x tends

to zero, so does 2xy
x2+y2

x (explicitly, given ε > 0, choose δ = ε and so if |x| < δ,

then
∣∣∣ 2xy
x2+y2

x
∣∣∣ ≤ |x| < δ = ε. (See the related two dimensional Example 12 on

page 121.)

4. (10 Points) Section 2.3, Exercise 4(d) Show that the following function is
differentiable at each point in its domain. Determine if the function is C1.

f(x, y) =
xy√
x2 + y2

.

Solution. The domain of the function f(x, y) = xy/
√
x2 + y2 consists of all

points (x, y) 6= (0, 0). We have the partial derivatives

∂f

∂x
=

∂(xy)

∂x

√
x2 + y2 − xy · ∂

∂x

√
x2 + y2

x2 + y2

=
y
√
x2 + y2 − x2y(x2 + y2)−1/2

x2 + y2

=
y3

(x2 + y2)3/2

∂f

∂y
=

x3

(x2 + y2)3/2

Observe that these partial derivatives are all continuous in the domain of f .
Therefore f is C1 and the function is differentiable by Theorem 9 on page 137.

5. (10 Points) Section 2.3, Exercise 8(c). Compute the matrix of partial
derivatives of the function f(x, y) = (x+ y, x− y, xy).
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Solution. Taking the partial derivatives of each of the three components of
f and arranging them as the three rows of the derivative matrix, we get

Df(x, y) =

 1 1
1 −1
y x

 .
6. (10 Points) Section 2.3 Exercise 10. Why should the graphs of f(x, y) =
x2 + y2, and g(x, y) = −x2 − y2 + xy3 be called “tangent” at (0, 0)?

Solution. At (0, 0),
∂f

∂x
(0, 0) = 0 =

∂g

∂x
(0, 0)

and
∂f

∂y
(0, 0) = 0 =

∂g

∂y
(0, 0).

Therefore the graphs of both f and g have the same tangent plane at (0, 0, 0),
namely the plane z = 0; i.e., the xy plane.

7. (15 Points) Section 2.4, Exercise 18. Suppose that a particle following the
path

c(t) = (et, e−t, cos(t))

flies off on a tangent at t0 = 1. Compute the position of the particle at time
t1 = 2.

Solution. The velocity vector is (et,−e−t,− sin t), which at t0 = 1 is the
vector (e,−e−1,− sin 1). The particle is at (e, e−1, cos 1) at t0 = 1. Hence the
tangent line placing the particle at its “take off” point at t = 1 is

`(t) = (e, e−1, cos 1) + (t− 1)(e,−e−1,− sin 1).

At t = 2, the position of the particle is on the line and is at

`(2) = (e, e−1, cos 1) + (e,−e−1,− sin 1) = (2e, 0, cos 1− sin 1).


