Mathematics 1c: Homework Set 8

Due: Tuesday, June 1 at 10am.

1. (10 Points) Section 8.1, Exercises 3c and 3d. Verify Green's theorem for the disk D with center $(0,0)$ and radius R and $P(x, y)=x y=Q(x, y)$ and the same disk for $P=2 y, Q=x$. .
2. (10 Points) Section 8.2, Exercise 3. Verify Stokes' theorem for $z=\sqrt{1-x^{2}-y^{2}}$, the upper hemisphere, with $z \geq 0$, and the radial vector field $\mathbf{F}(x, y, z)=$ $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
3. (10 Points) Section 8.2, Exercise 16. For a surface S and a fixed vector \mathbf{v}, prove that

$$
2 \iint_{S} \mathbf{v} \cdot \mathbf{n} d S=\int_{\partial S}(\mathbf{v} \times \mathbf{r}) \cdot d \mathbf{S}
$$

where $\mathbf{r}(x, y, z)=(x, y, z)$.
4. (15 Points) Section 8.2, Exercise 23. Let $\mathbf{F}=x^{2} \mathbf{i}+(2 x y+x) \mathbf{j}+z \mathbf{k}$. Let C be the circle $x^{2}+y^{2}=1$ in the plane $z=0$ oriented counterclockwise and S the disk $x^{2}+y^{2} \leq 1$ oriented with the normal vector \mathbf{k}. Determine:
(a) The integral of \mathbf{F} over S.
(b) The circulation of \mathbf{F} around C.
(c) Find the integral of $\nabla \times \mathbf{F}$ over S. Verify Stokes' theorem directly in this case.
5. (15 Points) Section 8.3, Exercise 14. Determine which of the following vector fields \mathbf{F} in the plane is the gradient of a scalar function f. If such an f exists, find it.
(a) $\mathbf{F}(x, y)=(\cos x y-x y \sin x y) \mathbf{i}-\left(x^{2} \sin x y\right) \mathbf{j}$
(b) $\mathbf{F}(x, y)=\left(x \sqrt{x^{2} y^{2}+1}\right) \mathbf{i}+\left(y \sqrt{x^{2} y^{2}+1}\right) \mathbf{j}$
(c) $\mathbf{F}(x, y)=(2 x \cos y+\cos y) \mathbf{i}-\left(x^{2} \sin y+x \sin y\right) \mathbf{j}$.
6. (10 Points) Section 8.4, Exercise 2. Let $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$. Evaluate the surface integral of \mathbf{F} over the unit sphere.
7. (10 Points) Section 8.4, Exercise 14. Fix k vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in space and numbers ("charges") q_{1}, \ldots, q_{k}. Define

$$
\phi(x, y, z)=\sum_{i=1}^{k} \frac{q_{i}}{4 \pi\left\|\mathbf{r}-\mathbf{v}_{i}\right\|},
$$

where $\mathbf{r}=(x, y, z)$. Show that for a closed surface S and $\mathbf{e}=-\nabla \phi$,

$$
\iint_{S} \mathbf{e} \cdot d \mathbf{S}=Q
$$

where $Q=q_{1}+\cdots+q_{k}$ is the total charge inside S. Assume that none of the charges are on S.

