Mathematics 1c: Homework Set 6

Due: Monday, May 17 at 10am.

1. (10 Points) Section 6.1, Exercise 6 Let D^{*} be the parallelogram with vertices

$$
(-1,3), \quad(0,0), \quad(2,-1) \quad \text { and } \quad(1,2)
$$

and D be the rectangle $D=[0,1] \times[0,1]$. Find a transformation T such that D is the image set of D^{*} under T.
2. (10 Points) Section 6.2, Exercise 6 Define $T(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$. Let D^{*} be the set of (u, v) with $u^{2}+v^{2} \leq 1, u \geq 0, v \geq 0$. Find $T\left(D^{*}\right)=D$ and evaluate

$$
\iint_{D} d x d y
$$

3. (10 Points) Section 6.2, Exercise 8 Calculate

$$
\iint_{R} \frac{d x d y}{x+y},
$$

where R is the region bounded by $x=0, y=0, x+y=1$, and $x+y=4$ by using the mapping $T(u, v)=(u-u v, u v)$.
4. (10 Points) Section 6.3, Exercise 4 Find the center of mass of the region between $y=0$ and $y=x^{2}$, where $0 \leq x \leq 1 / 2$.
5. (10 Points) Section 6.4, Exercise 8 Show that the integral

$$
\int_{0}^{1} \int_{0}^{a} \frac{x}{\sqrt{a^{2}-y^{2}}} d y d x
$$

exists, and compute its value. (You may assume that a is a positive constant).
6. (10 Points) Review Exercise 4b for Chaper 6 Perform a change of variables to cylindrical coordinates for

$$
\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} x y z d z d x d y
$$

7. (10 Points) Section 7.1, Exercise 4(a) Evaluate the path integral of $f(x, y, z)=$ $x \cos z$ along the path $\mathbf{c}: t \mapsto t \mathbf{i}+t^{2} \mathbf{j}, t \in[0,1]$.
8. (10 Points) Section 7.2, Exercise 2 Evaluate each of the following integrals:
(a) $\int_{\mathbf{c}} x d y-y d x, \quad \mathbf{c}(t)=(\cos t, \sin t), \quad 0 \leq t \leq 2 \pi$
(b) $\int_{\mathbf{c}} x d x+y d y, \quad \mathbf{c}(t)=(\cos \pi t, \sin \pi t), \quad 0 \leq t \leq 2$
(c) $\int_{\mathbf{c}} y z d x+x z d y+x y d z$, where \mathbf{c} consists of straight-line segments joining $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$
(d) $\int_{\mathbf{c}} x^{2} d x-x y d y+d z$, where \mathbf{c} is the parabola $z=x^{2}, y=0$ from $(-1,0,1)$ to $(1,0,1)$.
