Mathematics 1c: Homework Set 5

Due: Monday, May 10th at 10am.

1. (10 Points) Section 5.1, Exercise 4 Using Cavalieri's principle, compute the volume of the structure shown in Figure 5.1.11 of the textbook; each section is a rectangle of length 5 and width 3 .
2. (20 Points) Section 5.2, Exercise 8 Let f be continuous on $R=[a, b] \times[c, d]$. For $a<x<b$, and $c<y<d$, define

$$
F(x, y)=\int_{a}^{x} \int_{c}^{y} f(u, v) d v d u .
$$

Show that

$$
\frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial^{2} F}{\partial y \partial x}=f(x, y)
$$

Use this example to discuss the relationship between Fubini's Theorem and the equality of mixed partial derivatives.
3. (10 Points)Section 5.3, Exercise 2(a). Evaluate and sketch the region of integration

$$
\int_{-3}^{2} \int_{0}^{y^{2}}\left(x^{2}+y\right) d x d y
$$

4. (10 Points)Section 5.4, Exercise 2(a). Find

$$
\int_{-1}^{1} \int_{|y|}^{1}(x+y)^{2} d x d y
$$

5. (10 Points)Section 5.4, Exercise 8. Compute the double integral

$$
\iint_{D} f(x, y) d A
$$

where

$$
f(x, y)=y^{2} \sqrt{x}
$$

and D is the set of (x, y) where $x>0, y>x^{2}$, and $y<10-x^{2}$.
6. (10 Points)Section 5.5, Exercise 15. Evaluate

$$
\iiint_{W}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

where W is the region bounded by $x+y+z=a$ (where $a>0$ is a given constant), $x=0, y=0$, and $z=0$.
7. (10 Points)Section 5.5, Exercise 16. Evaluate

$$
\iiint_{W} z d x d y d z
$$

where W is the region bounded by the planes $x=0, y=0, z=0, z=1$, and the cylinder $x^{2}+y^{2}=1$, with $x \geq 0, y \geq 0$.

