Mathematics 1c: Homework Set 4

Due: Monday, April 26 at 10am.

1. (10 Points) Section 4.1, Exercise 14 Show that, at a local maximum or minimum of the quantity $\|\mathbf{r}(t)\|, \mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{r}(t)$.
2. (10 Points)Section 4.1, Exercise 18. Let \mathbf{c} be a path in \mathbb{R}^{3} with zero acceleration. Prove that \mathbf{c} is a straight line or a point.
3. (10 Points) Section 4.2, Exercise 4. Compute the arc length of the curve described by

$$
\left(t+1, \frac{2 \sqrt{2}}{3} t^{3 / 2}+7, \frac{1}{2} t^{2}\right)
$$

on the interval $1 \leq t \leq 2$.
4. (20 points) Exercise 18. In special relativity, the proper time of a path $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{4}$ with $\mathbf{c}(\lambda)=(x(\lambda), y(\lambda), z(\lambda), t(\lambda))$ is defined to be the quantity

$$
\frac{1}{c} \int_{a}^{b} \sqrt{-\left[x^{\prime}(\lambda)\right]^{2}-\left[y^{\prime}(\lambda)\right]^{2}-\left[z^{\prime}(\lambda)\right]^{2}+c^{2}\left[t^{\prime}(\lambda)\right]^{2}} d \lambda,
$$

where c is the velocity of light, a constant. Referring to the Figure, show that, using self-explanatory notation,
proper time $(\mathrm{AB})+$ proper time $(\mathrm{BC})<$ proper time (AC).
(This inequality is a special case of what is known as the twin paradox.)

5. (10 points) Section 4.3, Exercise 14. Show that the curve

$$
\mathbf{c}(t)=\left(t^{2}, 2 t-1, \sqrt{t}\right), t>0
$$

is a flow line of the velocity vector field

$$
\mathbf{F}(x, y, z)=(y+1,2,1 / 2 z) .
$$

6. (10 points) Section 4.4, Exercise 10. Find the divergence of the vector field $\mathbf{v}(x, y, z)=y \mathbf{i}-x \mathbf{j}$.
7. (10 Points) Exercise 16. Find the curl of the vector field

$$
\mathbf{F}(x, y, z)=\frac{y z \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}}{x^{2}+y^{2}+z^{2}} .
$$

