Mathematics 1c: Solutions, Homework Set 3

Due: Monday, April 19th by 10am.

1. (10 Points) Section 3.1, Exercise 16 Let $w=f(x, y)$ be a function of two variables, and let

$$
x=u+v, \quad y=u-v .
$$

Show that

$$
\frac{\partial^{2} w}{\partial u \partial v}=\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}} .
$$

2. (10 Points) Section 3.1, Exercise 22
(a) Show that the function

$$
g(x, t)=2+e^{-t} \sin x
$$

satisfies the heat equation: $g_{t}=g_{x x}$. [Here $g(x, t)$ represents the temperature in a metal rod at position x and time t.]
(b) Sketch the graph of g for $t \geq 0$. (Hint: Look at sections by the planes $t=0, t=1$, and $t=2$.)
(c) What happens to $g(x, t)$ as $t \rightarrow \infty$? Interpret this limit in terms of the behavior of heat in the rod.
3. (10 Points) Section 3.2, Exercise 6 Determine the second-order Taylor formula for the function

$$
f(x, y)=e^{(x-1)^{2}} \cos y
$$

expanded about the point $x_{0}=1, y_{0}=0$.
4. (10 Points) Section 3.3, Exercise $\mathbf{7}$ Find the critical points for the function

$$
f(x, y)=3 x^{2}+2 x y+2 x+y^{2}+y+4
$$

and determine if they are maxima, minima or saddle points.
5. (10 Points) Section 3.3, Exercise 25 Write the number 120 as a sum of three positive numbers so that the sum of the products taken two at a time is a maximum.
6. (10 Points) Section 3.4, Exercise 2 Find the extrema of $f(x, y)=x-y$ subject to the constraint $x^{2}-y^{2}=2$.
7. (10 Points) Section 3.4, Exercise 20 A light ray travels from point A to point B crossing a boundary between two media (see Figure 3.4.7 of the text). In the first medium its speed is v_{1} and in the second v_{2}. Show that the trip is made in minimum time when Snell's law holds:

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}} .
$$

8. (10 Points) Section 3.4, Exercise 22 Let P be a point on a surface S in \mathbb{R}^{3} defined by the equation $f(x, y, z)=1$, where f is of class C^{1}. Suppose that P is a point where the distance from the origin to S is maximized. Show that the vector emanating from the origin and ending at P is perpendicular to S.
