Mathematics 1c: Homework Set 1
Due: Monday, April 5th by 10am.

1. (10 Points) Using the computing site or otherwise, draw the graphs of the following functions:

 (a) \(f(x, y) = 3(x^2 + 2y^2)e^{-x^2-y^2} \); **Tip:** On the computing site use \(E[x] \) to take the exponent of \(x \); there is no need to type a * for multiplication; we suggest taking \(x \) and \(y \) between \(-2\) and \(2\).

 (b) \(f(x, y) = (x^3 - 3x)/(1 + y^2) \)

 Indicate some key features of these graphs, such as the location of the maxima and minima, important sections, etc.

2. (10 Points) **Section 2.1, parts of Exercises 15, 18.** Sketch the zero level set of the function \(f(x, y, z) = xy + yz \) and the level set for \(c = 1 \) of the function \(f(x, y) = \max(|x|, |y|) \).

3. (15 Points) **Section 2.2, Exercise 12.** Compute the following limits, if they exist

 (a) \(\lim_{x \to 0} \frac{\sin 2x - 2x}{x^3} \).

 (b) \(\lim_{(x,y) \to (0,0)} \frac{\sin 2x - 2x + y}{x^3 + y} \).

 (c) \(\lim_{(x,y,z) \to (0,0,0)} \frac{2x^2y \cos z}{x^2 + y^2} \).

4. (10 Points) **Section 2.3, Exercise 4(d)** Show that the following function is differentiable at each point in its domain. Determine if the function is \(C^1 \).

 \[f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}. \]

5. (10 Points) **Section 2.3, Exercise 8(c).** Compute the matrix of partial derivatives of the function \(f(x, y) = (x + y, x - y, xy) \).

6. (10 Points) **Section 2.3 Exercise 10.** Why should the graphs of \(f(x, y) = x^2 + y^2 \), and \(g(x, y) = -x^2 - y^2 + xy^3 \) be called “tangent” at \((0,0)\)?

7. (15 Points) **Section 2.4, Exercise 18.** Suppose that a particle following the path

 \[c(t) = (e^t, e^{-t}, \cos(t)) \]

flies off on a tangent at \(t_0 = 1 \). Compute the position of the particle at time \(t_1 = 2 \).