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The Geometry of Euclidean Space
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1.1 Vectors in Two and Three-Dimensional
Space

Key Points in this Section.

1. Addition and scalar multiplication for three-tuples are defined by

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b2)

and
α(a1, a2, a3) = (αa1, αa2, αa3).

There are similar definitions for pairs of real numbers (just leave off
the third component).

2. A vector (in the plane or space) is a directed line segment with a
specified tail (with the default being the origin) and an arrow at its
head.

3. Vectors are added by the parallelogram law and scalar multiplication
by α stretches the vector by this amount (in the opposite direction if
α is negative).

4. If a vector has its tail at the origin, the coordinates of its tip are its
components.

5. Addition and scalar multiplication of vectors (geometric) corresponds
to the same operations on the components (algebraic).

6. Standard Bases: Unit vectors i, j, k along the x, y, and z-axes.

7. A vector a (a1, a2, a3) is written

a = a1i + a2j + a3k.

8. The vector joining two points P = (x, y, z) and P′ = (x′, y′, z′)

is the vector
−−→
PP′, represented as an arrow from P to P′, and has

components −−→
PP′ = (x − x′, y − y′, z − z′).

9. The equation of the line through the point a (regarded as a vector
from the origin) in the direction of the vector v (regarded as a vector
based at the point a) is

�(t) = a + tv,

where t ranges over all real numbers.
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10. The equations of the straight line through the points P1 = (x1, y1, z1)
and P2 = (x2, y2, z2) are

x = x1 + t(x1 − x2)
y = y1 + t(y1 − y2)
z = z1 + t(z1 − z2)

11. The plane through the origin containing the vectors v and w consists
of all points of the form

sv + tw

where s and t range over all real numbers.
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1.2 The Inner Product, Length, and
Distance

Key Points in Section 1.2.

1. The inner product of the vectors a = (a1, a2, a3) and b = (b1, b2, b3)
is defined as

a · b = (a1b1 + a2b2 + a3b3);

this inner product is sometimes denoted 〈a,b〉.

2. The length or norm of a = (a1, a2, a3) is

‖a‖ =
√

a · a =
√

a2
1 + a2

2 + a2
3.

3. To normalize a nonzero vector a, form the unit vector

a
‖a‖ .

4. The distance between two points P and Q is ‖−→PQ‖.

5. The angle θ between two vectors a and b satisfies

a · b = ‖a‖‖b‖ cos θ.

6. The Cauchy-Schwarz Inequality:

|a · b| ≤ ‖a‖‖b‖.

7. The orthogonal projection of the vector v on the nonzero vector a
is

p =
a · v
‖a‖2

a.

Note that this is unchanged is a is multiplied by any nonzero scalar.

8. Triangle Inequality:

‖a + b‖ ≤ ‖a‖ + ‖b‖.

9. If an object has a constant velocity vector v, then after t units of
time, the object is moved by the displacement vector d = tv.
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1.3 Matrices, Determinants and the Cross
Product

Key Points in this Section.

1. Matrices are arrays of numbers, such as the 2 × 2 matrix[
1 3
−1 4

]

and the general 3 × 3 matrix
a11 a12 a13

a21 a22 a23

a31 a32 a33




2. The determinant of a 2 × 2 matrix is∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12.

3. The determinant of a 3 × 3 matrix is∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
4. Determinants may be expanded along any column or any row using

the following checkerboard pattern
+ − +
− + −
+ − +




5. Any multiple of one row can be added to another row with out chang-
ing the determinant. Same for columns, but you cannot mix rows and
columns.

6. The cross product of the vectors a and b is the vector

a × b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
7. The length of a × b is

‖a × b‖ = ‖a‖‖b‖ sin θ,

where θ is the angle (with 0 ≤ θ ≤ π) between the vectors a and b,
and equals the area of the parallelogram spanned by these vectors.
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8. The triple product

a · (b × c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
is the volume of the parallelogram spanned by the three vectors a, b,
and c.

9. The equation of the plane through the point (x0, y0, z0) and normal
to the vector n = Ai + Bj + Ck is

A(x − x0) + B(y − y0) + C(z − z0) = 0.

that is,
Ax + By + Cz + D = 0,

where D = −(Ax0 + By0 + Cz0).

10. The distance from the point (x1, y1, z1) to the plane

Ax + By + Cz + D = 0

is

Distance =
|Ax1 + By1 + Cz1 + D√

A2 + B2 + C2
.
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1.4 Cylindrical and Spherical Coordinates

Key Points in this Section.

1. The polar coordinates (r, θ) of a point (x, y) in the xy-plane are
determined by

x = r cos θ and y = r sin θ.

2. The cylindrical coordinates (r, θ, z) of a point (x, y, z) in R
3 are

determined by

x = r cos θ, y = r sin θ, and z = z.

3. The spherical coordinates (ρ, θ, φ) of a point (x, y, z) in R
3 are

determined by

x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cos φ.

4. The equations of geometric objects can sometimes be easiest to de-
scribe using one of these coordinate systems. For example, a cylinder
is described by r = constant and a sphere by ρ = constant.
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1.5 n-dimensional Euclidean Space

Key Points in this Section.

1. Euclidean n-space, denoted R
n, consists of n-tuples of real numbers:

x = (x1, x2, . . . , xn).

2. Addition and scalar multiplication of n-tuples is defines as we did
with 2- and 3-tuples:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)
α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn)

3. The inner, or dot product is defined by

x · y = x1y1 + x2y2 + · + xnyn,

and satisfies properties as with vectors in R
2 and R

3.

4. In particular, the Cauchy-Schwarz and triangle inequalities hold:

|x · y| ≤ ‖x‖‖y‖ and ‖x + y‖ ≤ ‖x‖ + ‖y‖.

5. An n × n matrix is a square array of numbers with n rows and n
columns. For instance, a 4 × 4 matrix has the form


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




6. The determinant of a 4 × 4 matrix may be expanded along any row
or column with a pattern of alternating +’s and −’s, as in the three
by three case. For example,∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣ − a12

∣∣∣∣∣∣
a21 a23 a24

a31 a33 a34

a41 a43 a44

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
a21 a22 a24

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣ − a14

∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣
7. If A and B are two n × n matrices, their matrix product AB is

another n × n matrix, whose ij th entry (sitting in the ith row and
jth column) is the inner product of the ith row of A with the jth
column of B.
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8. In general, matrix multiplication is associative; that is, (AB)C =
A(BC), but it need not be commutative; that is, AB �= BC in general.

9. The linear mapping of R
n to R

n defined by the n×n matrix A is the
map

x �→ Ax

where x is regarded as a column vector.

10. If detA �= 0, then A has an inverse, denoted A−1, which has the
property AA−1 = A−1A = I where I is the identity matrix (one’s
down the diagonal and zero’s elsewhere). The solution of a linear
system y = Ax is given by x = A−1y.
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2
Differentiation
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2.1 Functions, Graphs, and Level Surfaces

Key Points in this Section.

1. A mapping or function f : A ⊂ R
n → R

m sends each point x ∈ A
(the domain of f) to a specific point f(x) ∈ R

m. If m = 1, we call f
a real valued function.

2. The graph of f : U ⊂ R
2 → R is the set of all points of the form

(x, y, z) where (x, y) ∈ U and z = f(x, y). More generally, for f : U ⊂
R

n → R the graph is the subset of R
n+1 consisting of points of the

form (x1, . . . , xn, z), where (x1, . . . , xn) ∈ U (the domain of f) and
z = f(x1, . . . , xn).

3. A level set of a real valued function f : U ⊂ R
n → R obtained by

picking a constant c and forming the set of points (x1, . . . , xn) in U
such that f(x1, . . . , xn) = c. For n = 3 we speak of them as level
surfaces and for n = 2, level curves.

4. A section of a graph is obtained by intersecting the graph with a
vertical plane. For instance, for z = f(x, y), setting y = 0 produces
the section z = f(x, 0) which is the graph of one function of one
variable.

5. Level sets and sections are useful tools in constructing and visualizing
graphs.
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2.2 Limits and Continuity

Key Points in this Section.

1. A set U ⊂ R
n is open when, for every point x0 ∈ U , there is an r > 0

such that Dr(x0) ⊂ U . Here, Dr(x0) is the open disk, consisting of
all points x ∈ R

n such that ‖ x−x0 ‖< r. Open disks themselves are
open sets.

2. A neighborhood of a point x ∈ R
n is an open set containing x.

3. A boundary point of a set A ⊂ R
n is a point x ∈ R

n such that
every neighborhood of x contains a point in A and a point not in A.

4. Limits. Let f : A ⊂ R
n → R

m and x0 be in A or be a boundary
point of A and let b ∈ R

m. When we write

lim
x→x0

f(x) = b

we mean that for any neighborhood N of b, there is a neighborhood
U of x0 such that if x ∈ A ∩ U , then f(x) ∈ N .

5. Limits, if they exist, are unique. Also, the properties of limits from
one-variable calculus (such as: the limit of a sum is the sum of the
limits) also hold for functions of several variables.

6. Continuity. Let f : A ⊂ R
n → R

m and x0 ∈ A. We say f is
continuous at x0 provided

lim
x→x0

f(x) = f(x0).

If f is continuous at every point of A, we just say f is continuous.

7. The sum of continuous functions is continuous. The same is true of
products and quotients of real-valued functions (if the denominator
is non-zero).

8. The composition of continuous functions is continuous. Composi-
tions f ◦ g are defined by (f ◦ g)(x) = f(g(x)).

9. The usual functions of one-variable calculus, such as polynomials,
trigonometric, and exponential functions are continuous and these
can be used to build up continuous functions of several variables. For
instance, f(x, y) = exy/(1 − x2 − y2) is continuous on R

2 minus the
unit circle.

10. If f(x, y) has different limits as (0, 0) is approached along two different
rays (such as the x- and y-axes), then f is not continuous at (0, 0).
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2.3 Differentiation

Key Points in this Section.

1. Given f : U ⊂ R
3 → R, where U is open, the partial derivative

with respect to x is defined by

fx(x, y, z) =
∂f

∂x
(x, y, z) = lim

h→0

f(x + h, y, z) − f(x, y, z)
h

if it exists. The partial derivatives ∂f/∂y and ∂f/∂z are defined sim-
ilarly and the extension to function of n variables is analogous.

2. The linear approximation to f(x, y) at (x0, y0) is

�(x0,y0)(x, y) = f(x0, y0)+
[
∂f

∂x
(x0, y0)

]
(x−x0)+

[
∂f

∂y
(x0, y0)

]
(y−y0)

3. The function f(x, y) is differentiable at (x0, y0) if the partials exist
at (x0, y0) and if

lim
(x,y)→(x0,y0)

f(x, y) − �(x0,y0)(x, y)
‖ (x, y) − (x0, y0) ‖

= 0

4. If f is differentiable at (x0, y0), the tangent plane to the graph of
f at (x0, y0, z0), where z0 = f(x0, y0) is

z = �(x0,y0)(x, y).

5. The definition of differentiability is motivated by the idea that the
tangent plane should give a good approximation to the function.

6. If f : U ⊂ R
n → R

m has partial derivatives at x0 ∈ U , the derivative
matrix is the m × n matrix Df(x0) given by

Df(x0) =




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn




where the partials are all evaluated at x0.
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7. We say f : U ⊂ R
n → R

m is differentiable at x0 provided the
partials exist and

lim
x→x0

‖f(x) − f(x0) − Df(x0) · (x − x0)‖
‖x − x0‖

= 0.

8. For f : U ⊂ R
3 → R, its gradient is

∇f =
∂f

∂x
i +

∂f

∂y
i +

∂f

∂z
k.

Similarly, for f : U ⊂ R
n → R, ∇f is the vector with components

∇f =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
.

9. If f is differentiable at x0, then it is continuous at x0. If the partials
exist and are continuous in a neighborhood of x0 (that is, f is C1),
then f is differentiable at x0.
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2.4 Introduction to Paths

Key Points in this Section.

1. A path in R
3 is a map c of an interval [a, b] to R

3. The endpoints
of the path are the points c(a) and c(b). The associated geometric
curve C is the set of image points c(t) as t ranges from a to b. We say
c is a parametrization of C. Paths in the plane are similar (leave
off the last component).

2. A particle on the rim of a rolling circle of radius 1 traces out a path
called a cycloid:

c(t) = (t − sin t, 1 − cos t).

3. If a path c is differentiable, its velocity is defined to be

c′(t) = lim
h→0

c(t + h) − c(t)
h

= x′(t)i + y′(t)j + z′(t)k,

where c(t) has components (x(t), y(t), z(t)).

4. The vector c′(t0) is tangent to the path at the point c(t0). The tan-
gent line at this point is

�(t) = c(t0) + (t − t0)c′(t0).
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2.5 Properties of the Derivative

Key Points in this Section.

1. The constant multiple rule, the sum rule, product rule and quo-
tient rule are all analogous to their counterparts in single-variable
calculus.

2. The chain rule states that

D(f ◦ g)(x0) = Df(y0)Dg(x0)

where g : U ⊂ R
n → R

m and f : V ⊂ R
m → R

p are differentiable,
with g(U) ⊂ V so that the composition f ◦ g is defined and where
Df(y0)Dg(x0) is the p × n matrix that is the product of the p × m
matrix Df(y0) with the m × n matrix Dg(x0).

3. Special cases of the chain rule are, firstly,

dh

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

where h(t) = f(x(t), y(t), z(t)) and secondly,

∂h

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
+

∂f

∂w

∂w

∂x
,

where h(x, y, z) = f(u(x, y, z), v(x, y, z), w(x, y, z)).
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2.6 Gradients and Directional Derivatives

Key Points in this Section.

1. Thegradient of a differentiable function f : U ⊂ R
3 → R is

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

2. The directional derivative of f in the direction of a unit vector v
at the point x is

d

dt
f(x + tv)

∣∣∣∣
t=0

= ∇f(x) · v

3. The direction in which f is increasing the fastest at x is the direc-
tion parallel to ∇f(x). The direction of fastest decrease is parallel to
−∇f(x).

4. For f : U ⊂ R
3 → R a C1 function, with ∇f(x0, y0, z0) �= 0, the

vector ∇f(x0, y0, z0) is perpendicular to the level set f(x, y, z) =
f(x0, y0, z0). Thus, the tangent plane to this level set is

∇f(x0, y0, z0) · (x − x0, y − y0, z − z0) = 0.

5. The gravitational force field

F = −GMm

r3
r = −GMm

r2
n

(the inverse square law), where n = r/r, r = xi+yj+zk and r = ‖r‖,
is a gradient. Namely,

F = −∇V,

where
V = −GMm

r
.
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3
Higher-Order Derivatives; Maxima and
Minima
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3.1 Iterated Partial Derivatives

Key Points in this Section.

1. Equality of Mixed Partials. If f(x, y) is C2 (has continuous 2nd
partial derivatives), then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

2. The idea of the proof is to apply the mean value theorem to the
“difference of differences” written in the two ways

S(h, k) = {S(x + h, y + k) − S(x + h, y)} − {S(x, y + k) − S(x, y)}
= {S(x + h, y + k) − S(x, y + k)} − {S(x + h, y) − S(x, y)}

3. Higher order partials are also symmetric; for example, for f(x, y, z),

∂4f

∂x∂2z∂y
=

∂4f

∂x∂y∂2z

4. Many important equations describing nature involve partial deriva-
tives, such as the heat equation for the temperature T (x, y, z, t):

∂T

∂t
= k

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
.
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3.2 Taylor’s Theorem

Key Points in this Section.

1. The one-variable Taylor Theorem states that if f is Ck+1, then

f(x0+h) = f(x0)+f ′(x0)h+
f ′′(x0)

2
h2+· · ·+ f (k)(x0)

k!
hk+Rk(x0, h),

where Rk(x0, h)/hk → 0 as h → 0

2. The idea of the proof is to start with the Fundamental Theorem of
Calculus

f(x0 + h) = f(x0) +
∫ x0+h

x0

f ′(τ)dτ

(which gives Taylors’ theorem for k = 0) and integrating by parts.

3. For f : U ⊂ R
n → R of class C3, the second-order Taylor Theorem

states that

f(x0+h) = f(x0)+
n∑

i=1

hi
∂f

∂xi
(x0)+

1
2

∑
i,j

hihj
∂2f

∂xi∂xj
(x0)+R2(x0,h)

where R2(x0,h)/‖h‖2 → 0 as h → 0. Higher order versions are simi-
lar.

4. The idea of the proof is to apply the single-variable Taylor theorem
to the function g(t) = f(x0 + th), expanded about t0 = 0 with h = 1.
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3.3 Extrema of Real Valued Functions

Key Points in this Section.

1. Definitions. A local minimum point of f : U ⊂ R
n → R is a

point x0 ∈ U such that f(x0) ≤ f(x) for all x in some neighborhood
of x0; we say f(x0) is the corresponding local minimum value. If,
similarly, f(x0) ≥ f(x), then x0 is a local maximum point (and
f(x0) is the local maximum value). If x0 is either of these, it is a
local extremum.

2. First Derivative Test. If U ⊂ R
n is open, f : U ⊂ R

n → R is
differentiable and x0 is a local extremum, then x0 is a critical point;
that is, all the partials of f vanish at x0:

∂f

∂x1
(x0) = 0, · · · ,

∂f

∂x0
(x0) = 0.

The idea of the proof is to apply the one-variable first derivative test
to f restricted to lines through x0.

3. If f : U ⊂ R
n → R is C2, the Hessian of f at x0 is the quadratic

function of h given by

Hf(x0)(h) =
1
2
[h1, . . . , hn]




∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

...
∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn







h1

...
hn




which also equals the second term in the Taylor expansion of f about
x0.

4. Second Derivative Test—n Variables. If f : U ⊂ R
n → R is C3

(and again U is open), x0 is a critical point, and if Hf(x0)(h) > 0 for
all h �= 0 (that is, Hf(x0) is positive definite), then x0 is a local
minimum. Likewise, if Hf(x0)(h) < 0 for all h �= 0, (that is, Hf(x0)
is negative definite), then x0 is a local maximum.

5. The idea of the proof of the second derivative test is to apply the
second order Taylor theorem and show that the remainder term can
be ignored.

6. Second Derivative Test—Two Variables. Let f : U ⊂ R
2 → R

(again with U open) be of class C3. A point (x0, y0) ∈ U is a local
minimum if the following conditions are satisfied:

(i)
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0 (that is, (x0, y0) is a critical point)
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(ii)
∂2f

∂x2
(x0, y0) > 0

(iii) D =

∣∣∣∣∣∣∣∣∣

∂2f

∂x2
(x0, y0)

∂2f

∂x∂y
(x0, y0)

∂2f

∂x∂y
(x0, y0)

∂2f

∂y2
(x0, y0)

∣∣∣∣∣∣∣∣∣
> 0.

If (i) and (iii) hold, but ∂2f/∂x2 at (x0, y0) is negative, then (x0, y0)
is a local maximum. If the discriminant D is negative, then (x0, y0)
is a saddle point (that is, (x0, y0) is neither a local maximum nor a
local minimum).

7. Global Extrema. Let f : A ⊂ R
n → R, where A need not be

open. A point x0 ∈ A is an absolute or global minimum of f if
f(x0) ≤ f(x) for all x ∈ A. Similarly, x0 is an absolute or global
maximum if f(x0) ≥ f(x) for all x ∈ A.

8. If D ⊂ R
n is closed (that is, all boundary points of D lie in D) and

bounded (that is, D is a subset of some, perhaps large ball), and if
f : D ⊂ R

n → R is continuous, then f has (at least one) absolute
maximum point x0 ∈ D and (at least one) absolute minimum point
x1 ∈ D.

9. Strategy for Global Extrema. To find absolute extrema on a
closed and bounded region D ⊂ R

n that is an open set U together
with its boundary points ∂U ,

(i) find the critical points in U

(ii) find the maximum points of f on ∂U

(iii) compute the values of f at all the points in (i) and (ii)

(iv) the largest such value gives the maximum and the smallest the
minimum.

If n = 2 and ∂U is a closed curve, step (ii) can be done by parametriz-
ing this curve and using the methods of one-variable calculus. Alter-
natively, for n = 2 or 3, one can use the Lagrange multipliers given
in the next section.
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3.4 Constrained Extrema and Lagrange
Multipliers

Key Points in this Section.

1. Lagrange Multiplier Equations. Let f : U ⊂ R
n → R and g : U ⊂

R
n → R be C1. Consider the problem of extremizing f on a level set

of g, say g(x) = c. If x0 is such an extremum and if ∇g(x0) �= 0 then
the Lagrange multiplier equations hold:

∇f(x0) = λ∇g(x0)

for a constant λ, the multiplier.

2. The idea of the proof is to use the fact that f has a critical point
along any curve in the level set through x0, which shows, via the
chain rule, that ∇f(x0) is perpendicular to that level set; but ∇g(x0)
is also perpendicular, so these two vectors are parallel.

3. The Lagrange multiplier method produces candidates for extrema;
one must make sure there is an extremum and then f can be evaluated
at the candidates to choose the maximum or minimum as desired.

4. If there are k constraints

g1 = c1, · · · , gk = ck,

for C1 functions g(x1, . . . , xn), . . . gk(x1, . . . , xn) and constants c1, . . . , ck,
then the Lagrange multiplier equations become

∇f(x0) = λ1∇g(x0) + · · · + λk∇g(x0).

5. The Lagrange multiplier method is an effective tool for finding the
extrema of f |∂U in the strategy for finding global extrema described
in the last section.

6. Second Derivative Test with Constraints. Let x0 satisfy the
conditions of the Lagrange multiplier theorem (in point 1.) Let h =
f − λg and |H̄| be the bordered Hessian determinant:

|H̄| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 − ∂g

∂x
− ∂g

∂y

− ∂g

∂x

∂2h

∂x2

∂2h

∂x∂y

− ∂g

∂y

∂2h

∂x∂y

∂2h

∂y2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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evaluated at x0.

If |H̄| > 0, then x0 is a local maximum of f subject to the constraint
g = c and if |H̄| < 0, it is a local minimum.
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3.5 The Implicit Function Theorem

Key Points in this Section.

1. One-Variable Version. If f : (a, b) → R is C1 and if f ′(x0) �= 0,
then locally near x0, f has a C1 inverse function x = f−1(y). If
f ′(x) > 0 on all of (a, b) and is continuous on [a, b], then f has
an inverse defined on [f(a), f(b)]. This result is used in one-variable
calculus to define, for example, the log function as the inverse of
f(x) = ex and sin−1 as the inverse of f(x) = sinx.

2. Special n-variable Version. If F : R
n+1 → R is C1 and at a

point (x0, z) ∈ R
n+1, F (x0, z) = 0 and ∂F

∂z (x0, z0) �= 0, then locally
near (x0, z0) there is a unique solution z = g(x) of the equation
F (x, z) = 0. We say that F (x, z) = 0 implicitly defines z as a
function of x = (x1, . . . , xn).

3. The partial derivatives are computed by implicit differentiation:

∂F

∂xi
+

∂F

∂z

∂z

∂xi
= 0,

so
∂z

∂xi
= −∂F/∂xi

∂F/∂z

4. The special implicit function theorem guarantees that if ∇g(x0) �= 0,
then the level set g = c is a smooth surface near x0, a fact needed in
the proof of the Lagrange multiplier theorem.

5. The general implicit function theorem deals with solving m equations

F1(x1, . . . , xn, z1, . . . , zm) = 0
...

...
Fm(x1, . . . , xn, z1, . . . , zm) = 0

for m unknowns z = (z1, . . . , zm). If∣∣∣∣∣∣∣∣∣∣

∂F1

∂z1
. . .

∂F1

∂zm
...

...
∂Fm

∂z1
. . .

∂Fm

∂zm

∣∣∣∣∣∣∣∣∣∣
�= 0

at (x0, z0), then these equations define (z1, . . . , zm) as functions of
(x1, . . . , xn). The partial derivatives ∂zi/∂xj may again be computed
by using implicit differentiation.
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6. The Inverse Function Theorem, which is a special case of the
general implicit function theorem, states that a system

f1(x1, . . . , xn) = y1

...
...

fn(x1, . . . , xn) = yn

where f = (f1, . . . , fn) is a C1 mapping, can be solved for the xi’s as
functions of (y1, . . . , yn) near a given point x0, y0 = f(x0) provided
the Jacobian determinant

∂(f1, . . . , fn)
∂(x1, . . . , xn)

∣∣∣∣
x=x0

= J(f)(x0) =

∣∣∣∣∣∣∣∣∣∣

∂f1

∂x1
. . .

∂f1

∂xn
...

...
∂fn

∂x1
. . .

∂fn

∂xn

∣∣∣∣∣∣∣∣∣∣
(where partials are evaluated at x0) is non-zero. Again the partial
derivatives ∂xi/∂yj can be determined by implicit differentiation.
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4
Vector Valued Functions
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4.1 Acceleration and Newton’s Second Law

Key Points in this Section.

1. Two of the more important rules for differentiating paths are

(a) Dot Product Rule:

d

dt
[b(t) · c(t)] = b′(t) · c(t) + b(t) · c′(t)

(b) Cross Product Rule:

d

dt
[b(t) × c(t)] = b′(t) × c(t) + b(t) × c′(t).

2. The acceleration of a path is a(t) = c′′(t).

3. A C1 path is regular at t0 when c′(t0) �= 0. Non-intersecting regular
paths have images that look smooth.

4. If F is a force field acting on a particle of mass m, then the particle
follows a path satisfying Newton’s Second Law: F(c(t)) = ma(t),
or F = ma for short.

5. Newton’s Law of Gravity:

F(r) = −GmM

r3
r.

6. Kepler’s Law. For a particle moving in a circular orbit under New-
ton’s law of gravity, the square of the period is proportional to the
cube of the radius.
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4.2 Arc Length

Key Points in this Section.

1. The length of a C1 path c(t), a ≤ t ≤ b, is

L(c) =
∫ b

a

‖c′(t)‖dt.

2. If the path is only piecewise C1, then the length is the sum of the
lengths of the pieces.

3. If c(t) = x(t)i + y(t)j + z(t)k, the vector arc length differential,
also called the infinitesimal displacement, is

ds = dxi + dyj + dzk =
(

dx

dt
i +

dy

dt
j +

dz

dt
k
)

dt = c′(t)dt

and its length, called the (scalar) arc length differential, is

ds =
√

dx2 + dy2 + dz2 =

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt = ‖c′(t)‖dt.

4. The arc length function of a path is

s(t) =
∫ t

a

‖c′(τ)‖dτ.

5. The formula for arc length may be justified by either Riemann sums,
thinking of a path as being made up of many little, nearly straight
segments, or by thinking of a moving particle and using

distance =
∫

speed.
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4.3 Vector Fields

Key Points in this Section.

1. A vector field in R
3 assigns a vector to each point in space. Simi-

larly, a vector field in R
2 assigns a vector to each point in the plane.

2. A vector field is a gradient vector field if it equals the gradient of
some function.

3. The gravitational vector field

F = −mMG

r3
r

is a gradient. In fact, F = −∇V , where

V = −mMG

r
.

4. A particle moving according to Newton’s second law F = ma in a
gradient field, sayF = −∇V conserves energy; that is,

E =
1
2
m‖r′(t)‖2 + V (r(t))

is constant in time.

5. Not all vector fields are gradient fields.

6. A flow line of a vector field F is a path c(t) satisfying

c′(t) = F(c(t)).
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4.4 Divergence and Curl

Key Points in this Section.

1. The del operator is

∇ = i
∂

∂x
+ j

∂

∂y
+ z

∂

∂k
.

2. The gradient of a function may be thought of as ∇ operating on
that function.

3. The divergence of a vector field F = P i + Qj + Rk is

div F = ∇ · F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

(omit R for planar vector fields). The divergence may be thought of
as the dot product of ∇ and F .

4. Expansion and the Divergence. The divergence measures the rate
at which F expands (if ∇·F > 0) or contracts (if ∇·F < 0) volumes,
or areas in the case of planar vector fields.

5. The curl of F = P i + Qj + Rk is

curlF = ∇× F =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

P Q R

∣∣∣∣∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
i −

(
∂R

∂x
− ∂P

∂z

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

and may be thought of as the cross product of ∇ and F.

If F = P i + Qj is two dimensional, only the last term is present and
it gives the scalar function,

∂Q

∂x
− ∂P

∂y
,

which is called the scalar curl.

6. Rotations and the Curl. The vector field describing rigid rota-
tional motion of a body about a fixed axis has curl equal in magni-
tude to twice the angular velocity and points along the axis of rotation
(using the right hand rule).
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7. Vector Identities. There are many basic identities involving div,
grad and curl, such as

(a) ∇×∇f = 0 (c.f. v × v = 0)

(b) ∇ · (∇× F) = 0) (c.f. v · (v × w) = 0)

(c) div (fF) = f div F + (∇f) · F
(d) curl (fF) = f curl F + ∇f × F

(e) ∇(rn) = nrn−2r

(f) ∇2(1/r) = 0 (for r �= 0).

Here,

∇2f = ∇ · ∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

is the Laplacian of f .
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5
Double and Triple Integrals
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5.1 Introduction

Key Points in this Section.

1. If R = [a, b] × [c, d] is a rectangle in the plane and f : R → R is a
non-negative function, then∫ ∫

R

f(x, y)dA =
∫ ∫

R

f(x, y)dx dy

is the volume of the region under the graph of f and above the rect-
angle R. This is an ‘informal’ definition in that it assumes one knows
about volumes. A ‘rigorous’ definition is given in §5.2.

2. Cavalieri’s Principle. Suppose that one is given the following data
(see Figure 5.1.1):

(a) A solid S,
(b) An x-axis in space,
(c) Planes Px perpendicular to the x-axis cutting S in regions Rx

with areas A(x) for x ranging between x = a and x = b.
(d) Then the volume of S is

V =
∫ b

a

A(x)dx.

P0
P–2.5 P2 P4

–2.5 0 2 4

Px

Rx

x
x

Reference Point

a b

Area = A(x)

Figure 5.1.1. The data used in Cavalieri’s principle: Volume =
∫ b

a A(x)dx

3. Iterated Integrals. Using slices along the x and y-axes, together
with the interpretation of the one-variable integral as an area, Cava-
lieri’s principle leads to the double integral written as iterated inte-
grals:∫ ∫

R

f(x, y)dA =
∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy.
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5.2 The Double Integral over a Rectangle

Key Points in this Section.

1. A Riemann sum for a function f defined on a rectangle R = [a, b]×
[c, d] has the form

Sn =
n−1∑

j,k=0

f(cjk)∆x∆y,

where R is divided into n2 equal sub-rectangles obtained by dividing
[a, b] and [c, d] into n equal parts, and where cjk is a point chosen in
the jkth sub-rectangle, 0 ≤ j,k ≤ n− 1, of width ∆x and height ∆y.

2. Definition of the Integral. If limn→∞ Sn = S exists and is inde-
pendent of the choice of cjk, f is called integrable over R and the
limit is denoted∫ ∫

R

f(x, y)dA, or
∫ ∫

R

f(x, y)dxdy, or
∫ ∫

R

fdA.

3. Continuous functions as well as functions that are bounded and that
are continuous except along a finite union of graphs of functions (of
either x or y) are integrable.

4. The integral is linear in its argument and is additive with respect to
the region. It also satisfies∣∣∣∣

∫ ∫
R

fdA

∣∣∣∣ ≤
∫ ∫

R

|f | dA

5. For f ≥ 0, the rigorous definition in point 2 justifies interpreting∫∫
R

fdA as the volume of the region under the graph of f and over
R, as well as giving a theoretical foundation for the definition of the
volume of a region.

6. Fubini’s Theorem states that for f continuous, the reduction to
iterated integrals holds:

∫ ∫
R

f(x, y)dA =
∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy.

A similar result holds for bounded functions with discontinuities along
a finite number of graphs provided the iterated integrals exist.
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5.3 The Double Integral Over More General
Regions

Key Points in this Section.

1. Elementary Regions. A y-simple region is one that lies between
two continuous curves y = φ1(x) and y = φ2(x), where φ1(x) ≤ φ2(x)
and a ≤ x ≤ b. Similarly, x-simple regions are those lying between
two continuous curves x = ψ1(y) and x = ψ2(y), where ψ1(y) ≤ ψ2(y)
and c ≤ y ≤ d. An elementary region is one that is either y-simple
or is x-simple. If it is both, then it is called simple.

2. The integral of a function f over an elementary region D is obtained
by extending f to f∗, the function defined to be f on D and zero
outside D but inside a containing rectangle R. The integral of f over
D is defined by ∫ ∫

D

fdA =
∫ ∫

R

f∗dA.

3. For a y-simple region

∫ ∫
D

fdA =
∫ b

a

∫ φ2(x)

φ1(x)

f(x, y)dydx

and for an x-simple region

∫ ∫
D

fdA =
∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y)dxdy.
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5.4 Changing the Order of Integration

Key Points in this Section.

1. If D is a simple region, that is, it is both x-simple and y-simple, then

∫ b

a

∫ φ2(x)

φ1(x)

f(x, y)dydx =
∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y)dxdy.

Sometimes one of these orders is simpler to evaluate than the other.

2. If m ≤ f(x, y) ≤ M on an elementary region D, then the mean
value inequality holds:

m Area(D) ≤
∫ ∫

D

fdA ≤ M Area(D).

3. If f is continuous and D is an elementary region (that is, it is either
x-simple or y-simple), then the mean value equality holds:∫ ∫

D

f(x, y)dA = f(x0, y0) Area(D).

for some point (x0, y0) in D.
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5.5 The Triple Integral

Key Points in this Section.

1. Definition of the Integral. If f is a bounded function defined on
a box B = [a, b] × [c, d] × [p, q] in R

3, the triple integral, denoted∫∫∫
B

fdV ,
∫∫∫

B

f(x, y, z)dV , or
∫∫∫

B

f(x, y, z)dx dy dz

is defined as a limit of Riemann sums analogous to that for double
integrals; if the limit exists, f is called integrable.

2. Reduction to Iterated Integrals. When f is integrable and an
iterated integral exists, one has equality; for example,

∫∫∫
B

fdV =
∫ b

a

{∫ q

p

[∫ d

c

f(x, y, z)dy

]
dz

}
dx

3. Elementary Regions. An example of an elementary region W
in R

3 is one defined by inequalities a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x) (an
elementary region in the plane) and γ1(x, y) ≤ z ≤ γ2(x, y).

4. The integral
∫∫∫

W
fdV of a function f defined on an elementary

region W is obtained, as for double integrals, by extending f to be
zero outside W but inside a box B containing W .

5. For the elementary region W described in point 3,

∫∫∫
W

fdV =
∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x,y)

γ1(x,y)

f(x, y, z)dz dy dx.

6. For regions that can be described as elementary regions in more than
one way, one can, as with double integrals, change the order of inte-
gration.
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6
The Change of Variables Formula and
Applications
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6.1 The Geometry of Maps from R
2 to R

2

Key Points in this Section.

1. A mapping T of a region D∗ in R
2 to R

2 associates to each point
(u, v) in D∗ a point (x, y) = T (u, v). The set of all such (x, y) is the
image domain D = T (D∗).

2. If T is linear; that is if T (u, v) = A [ u
v ], where A is a 2 × 2 matrix

(and identifying points (u, v) with column vectors [ u
v ]), then T maps

parallelograms to parallelograms, mapping the sides and vertices of
the first, to those of the second.

3. A map T is called one-to-one if different points (that is, (u, v) �=
(u′, v′)) get sent to different points (that is T (u, v) �= T (u′, v′)).

4. If T is linear, determined by a 2 × 2 matrix A, then T is one-to-one
when detA �= 0.

5. When D is the image of T ; that is, D = T (D∗), we say T maps D∗

onto D.
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6.2 The Change of Variables Theorem

Key Points in this Section.

1. The Jacobian determinant of a C1 mapping T : D∗ ⊂ R
2 → R;

T (u, v) = (x(u, v), y(u, v)) is defined by

∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
.

2. The singe variable change of variables formula, which is an
integrated version of the chain rule, states that for u �→ x(u) a C1

mapping and f(x) continuous,

∫ x(b)

x(a)

f(x) dx =
∫ b

a

f(x(u))
dx

du
du

3. The two-variable change of variables formula states that for a
C1 map τ : D∗ → D that is one-to-one and onto D, and an integrable
function f : D → R,∫ ∫

D

f(x, y) dx dy =
∫ ∫

D∗
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv.

4. The key idea in the proof is to put together these facts

(a) the double integral is a limit of Riemann sums

(b) the mapping T is nearly equal to its linear approximation on
each term in the Riemann sum

(c) the absolute value of the determinant of a linear map is the
factor by which the map distorts area.

5. For polar coordinates (r, θ) �→ (x, y), where x = r cos θ and y =
r sin θ, the change of variables formula reads∫ ∫

D

f(x, y) dx dy =
∫ ∫

D∗
f(r cos θ, r sin θ)r dr dθ

and we write the relation between the area elements as

dx dy = r dr dθ
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6. Guassian Integral. An interesting combination of reduction to iter-
ated integrals and a change of variables to polar coordinates applied
to the integral

∫∫
R2 e−x2−y2

dx dy shows that
∫ ∞

−∞
e−x2

dx =
√

π.

7. The triple integral change of variables formula states that for
a C1 one-to-one map T : W ∗ → W that is onto W (except possibly
on a finite union of curves), and an integrable function f : W → R,∫∫∫

W

f(x, y, z) dx dy dz

=
∫∫∫

W∗
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw,

where T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)) and where the
Jacobian determinant

∂(x, y, z)
∂(u, v, w)

is the determinant of DT , the matrix of partial derivatives of T .

8. Cylindrical Coordinates. For x = r cos θ, y = r sin θ, z = z,∫∫∫
W

f(x, y, z) dx dy dz =
∫∫∫

W∗
f(r cos θ, r sin θ, z) r dr dθ dz

and the volume elements are related by

dx dy dz = r dr dθ dz

9. Spherical Coordinates. For x = ρ sinφ cos θ, y = ρ sinφ sin θ, z =
ρ cos φ,∫∫∫

W

f(x, y, z) dx dy dz

=
∫∫∫

W∗
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cos φ) ρ2 sinφ dρ dθ dφ

and the volume elements are related by

dx dy dz = ρ2 sinφ dρ dθ dφ.
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6.3 Applications of Double and Triple
Integrals

Key Points in this Section.

1. The average value of a function f : [a, b] → R is

[f ]av =
1

b − a

∫ b

a

f(x)dx,

of f : D ⊂ R
2 → R is

[f ]av =
1

Area(D)

∫ ∫
D

f(x, y) dx dy

where Area(D) =
∫∫

D
dx dy and of f : W ⊂ R

3 → R is

[f ]av =
1

Volume(W )

∫∫∫
W

f(x, y, z) dx dy dz,

where Volume(W ) =
∫∫∫

W
dx dy dz.

2. The center of mass of a distribution of masses m1, . . . , mn at points
x1, . . . , xn on R is

x̄ =
1

m1 + · · · + mn
(x1m1 + · · · + xnmn) ,

of material with a mass density δ(x) on [a, b] is

x̄ =
1∫ b

a
δ(x)dx

∫ b

a

xδ(x)dx,

and of material with mass density δ(x, y) on D ⊂ R
2 is (x̄, ȳ), where

x̄ =
1∫∫

D
δ(x, y)dxdy

∫ ∫
D

xδ(x, y)dxdy

ȳ =
1∫∫

D
δ(x, y)dxdy

∫ ∫
D

yδ(x, y)dxdy,

and of a distribution of material with mass density δ(x, y, z) on a
region W ⊂ R

3 is (x̄, ȳ, z̄), where

x̄ =
1∫∫∫

W
δ(x, y, z)dxdydz

∫∫∫
W

xδ(x, y, z)dxdydz

with similar formulas for ȳ and z̄. In each of these formulas, the
denominator is the total mass.
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3. The moments of inertia of a solid body occupying a region W ⊂ R
3

with mass density δ(x, y, z) about the x,y,and z-axes are

Ix =
∫∫∫

W

(y2 + z2)δ(x, y, z)dxdydz,

Iy =
∫∫∫

W

(x2 + z2)δ(x, y, z)dxdydz,

Iz =
∫∫∫

W

(x2 + y2)δ(x, y, z)dxdydz.

4. The gravitational potential of a particle with mass m due to matter
occupying a region W with mass density δ(x, y, z) at a point (X, Y, Z)
outside the body is

V (X, Y, Z) = −Gm

∫∫∫
W

δ(x, y, z)dxdydz√
(x − X)2 + (y − Y )2 + (z − Z)2
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6.4 Improper Integrals

Key Points in this Section.

1. Improper integrals occur when either (a) the function being inte-
grated is unbounded in an elementary region D or (b) the region
itself is unbounded. In case (a), if f : D → R is unbounded at parts
of the boundary of D, then we find a sequence of smaller regions, say
Dη,δ obtained by “backing off” by an amount η from the sides and δ
from the top and bottom. Then we define∫ ∫

D

f dA = lim
(η,δ)→(0,0)

∫ ∫
Dη,δ

f dA

if the limit exists. For y-simple regions,

∫ ∫
Dη,δ

f dA =
∫ b−η

a+η

∫ φ2(x)−δ

φ1(x)+δ

f(x, y) dy dx.

In case (b) one similarly finds a family of bounded regions expanding
to the given region and again takes the limit of the integrals over the
bounded regions.

2. Fubini’s Theorem. If f is a function, satisfying f ≥ 0, continuous
except possibly on the boundary of a y-simple region D, and if the
iterated (improper) integral

∫ b

a

∫ φ2(x)

φ1(x)

f(x, y) dy dx

exists, then f itself is integrable and
∫∫

D
f dA equals the iterated

integral. Here, for each x,

g(x) =
∫ φ2(x)

φ1(x)

f(x, y) dy = lim
α→0+

∫ φ2(x)−α

φ1(x)+α

f(x, y) dy,

and
∫ b

a
g(x) dx = limβ→0+

∫ b−β

a+β
g(x) dx, as in one variable calculus.

There is a similar statement for x-simple regions.

The subtlety here is that for positive functions, two single limits can
be replaced by one double limit. Exercise 18 shows that positivity of
f is essential, or this result is not true.
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7
Integrals over Curves and Surfaces
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7.1 The Path Integral

Key Points in this Section.

1. Definition. The path integral of a scalar function f in R
3 along a

path c(t), where a ≤ t ≤ b, is defined by

∫
c

f ds =
∫ b

a

f(x(t), y(t), z(t))‖c′(t)‖ dt.

2. The scalar element of arc length is

ds = ‖c′(t)‖ dt.

3. There is a similar definition for path integrals in the plane (just leave
out the z-dependence).

4. If f has the interpretation of the mass density along a wire, then the
path integral is the total mass of the wire.

5. If the curve is in the xy-plane and f is interpreted as the height of a
fence along the curve, then the path integral is the area of (one side
of) this fence.

6. Arc Length a Special Case. If f = 1 (is identically one), then the
definition of the path integral reduces to that for the arc length of
the path.
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7.2 Line Integrals

Key Points in this Section.

1. Definition. The line integral of a given continuous vector field F
(defined in the plane or in space) along a path c(t), where a ≤ t ≤ b,
is defined by ∫

c

F · ds =
∫ b

a

F(c(t)) · c′(t) dt.

2. The vector line element is

ds = c′(t) dt.

3. Interpretation as Work. If F represents a force field, then the
line integral of F along c is the work done by the force field in
moving a particle subject to this force field, along the path. (Another
interpretation in terms of circulation, when F represents the velocity
field of a fluid, is given in Chapter 8).

4. Line Integral of a Gradient. If F = ∇f , then an analog of the
Fundamental Theorem of Calculus holds∫

c

F · ds = f(c(b)) − f(c(a)).

In fact, this result follows directly from the single variable Funda-
mental Theorem of Calculus since, by the Chain Rule,

d

dt
f(c(t)) = F(c(t)) · c′(t).

5. Line integrals are independent of orientation preserving reparametriza-
tions and path integrals are independent of any reparametrization.
This is proved using the single-variable change of variables formula.

6. Because of the independence of parametrization one can define the
line integral of a vector field along a geometric curve C, denoted∫

C

F · ds or
∫

C

F · dr

as long as an orientation along the curve is specified. To actually
evaluate such an integral, any parametrization may be chosen, or
some other method (such as the fundamental theorem in item 3) is
used.
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7.3 Parametrized Surfaces

Key Points in this Section.

1. To be able to deal with surfaces such as the sphere, one needs to
move beyond graphs to more general objects, such as parametrized
surfaces.

2. A parametrized surface is a map

Φ : D → R
3

written as
Φ(u, v) = (x(u, v), y(u, v), z(u, v)) .

3. The actual surface S is the image of the map Φ.

4. Tangent vectors to the surface are given by

Tu =
∂Φ
∂u

=
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k.

and
Tv =

∂Φ
∂v

=
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k.

with a normal vector being given by

n = Tu × Tv.

5. A surface is called regular if Tu × Tv �= 0. This nonzero normal
vector is useful for finding the equation of the tangent plane to the
surface. The tangent plane at a point (x0, y0, z0) on the surface is
given by

(x − x0, y − y0, z − z0) · n = 0,

where the normal vector n is evaluated at the point (x0, y0, z0) =
Φ(u0, v0).



Page 53

7.4 Area of a Surface

Key Points in this Section.

1. Area of a parametrized surface:

A(S) =
∫∫

D

‖Tu × Tv‖ du dv

=
∫∫

D

√[
∂(y, z)
∂(u, v)

]2

+
[
∂(x, y)
∂(u, v)

]2

+
[
∂(x, z)
∂(u, v)

]2

du dv

2. The scalar surface area element is the integrand:

dS = ‖Tu × Tv‖ du dv

=

√[
∂(y, z)
∂(u, v)

]2

+
[
∂(x, y)
∂(u, v)

]2

+
[
∂(x, z)
∂(u, v)

]2

du dv

3. The formula for the area element is motivated by the fact that on a
small patch, the surface is approximated by the parallelogram with
sides Tu du and Tv dv and the fact that the area of a parallelogram
with sides a and b is given by ‖a × b‖.

4. Sphere. x2 + y2 + z2 = R2, the scalar surface element is given by:

dS = R2 sinφ dφ dθ

5. Graph. z = g(x, y) (where (x, y) ∈ D ⊂ R
2 can be parametrized by

x = u, y = v, z = g(u, v).

6. Surface area of a graph.

A(S) =
∫∫

D




√[
∂g

∂x

]2

+
[
∂g

∂y

]2

+ 1


 du dv

7. Surfaces of Revolution.

(a) Revolve y = f(x), where a ≤ x ≤ b, about the x-axis:

A(S) = 2π

∫ b

a

(
|f(x)|

√
1 + (f ′(x))2

)
dx

(b) Revolve y = f(x), where a ≤ x ≤ b, about the y-axis:

A(S) = 2π

∫ b

a

(
|x|

√
1 + (f ′(x))2

)
dx
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8. The formulas in points 6 and 7 are derived from the general area
formula in point 1 for a parametrized surface by parametrizing the
circles making up the surface using sines and cosines.
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7.5 Integrals of Scalar Functions over
Surfaces

Key Points in this Section.

1. Definition of Scalar Surface Integral.∫∫
S

f dS =
∫∫

D

f(x(u, v), y(u, v), z(u, v))‖Tu × Tv‖ du dv

2. Graph. For z = g(x, y) with Φ(u, v) = (u, v, g(u, v)),

Tu = i +
∂g

∂u
k; Tv = j +

∂g

∂v
k

and

Tu × Tv =

∣∣∣∣∣∣
i j k
1 0 ∂g

∂u

0 1 ∂g
∂v

∣∣∣∣∣∣ = −∂g

∂u
i − ∂g

∂v
j + k

3. Scalar Surface Element Formulas.

(a) Parametrized Surface.

dS = ‖Tu × Tv‖ du dv

(b) Graph.

dS =
dxdy

cos θ
=

dx dy

n · k =




√(
∂g

∂x

)2

+
(

∂g

∂y

)2

+ 1


 dx dy

where cos θ = n · k, and n is the upward pointing unit normal
vector to the surface. See Figure 7.5.1.
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n

z = g(x,y)z

y

x

k

(x,y)•

•

θ

(x,y,z)

g

Figure 7.5.1. The area element on a graph is dS = dxdy
cos θ

= dx dy
n·k .

(c) Sphere x2 + y2 + z2 = R2:

dS = R2 sinφ dφ dθ

4. Surface integrals are independent of the parametrization of the sur-
face chosen (this is discussed in the next section).

5. Interpretation. The total mass of a surface with a surface mass
density m (mass per unit area) is given by

M(S) =
∫∫

S

m(x, y, z)dS.
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7.6 Surface Integrals of Vector Functions

Key Points in this Section.

1. Definition. The formula for the surface integral of a vector field F
over a parametrized surface is given by:∫∫

S

F · dS =
∫∫

D

F · (Tu × Tv) du dv

2. The dS and dS notation helps one remember the formulas for integrals
of scalar and vector functions on surfaces.

3. Surface Area Elements—Parametrized Surface.

dS = Tu × Tv du dv, dS = ‖Tu × Tv‖ du dv

or, in other notation,

dS = Φu × Φv du dv, dS = ‖Φu × Φv‖ du dv.

4. Vector vs Scalar Surface Element. Since the unit normal is n =
(Tu × Tv) /‖Tu × Tv‖, it follows from the preceding points that

dS = n dS.

5. Vector Surface Element for a Sphere of Radius R:

dS = (xi + yj + zk)R sinφ dφ dθ = rR sinφ dφ dθ

6. Geometric Surface. This is similar to the geometric curve idea met
in line integrals. To integrate over a geometric surface, we need an
orientation, or handedness. This is done by specifying a direction for
the unit normal.

7. Möbius Band. Many students are fascinated by the fact that the
Möbius band cannot be oriented. A classroom demonstration of this
may be useful.

8. Graphs. If S is a graph z = g(x, y), the default orientation is the
upward normal. In the case of graphs, many students will want to
memorize the formula

dS =
(
−∂g

∂x
i − ∂g

∂y
j + k

)
dx dy,

which is just Φx × Φy dx dy where Φ(x, y) = (x, y, g(x, y)).
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9. Independence of Parametrization. As long as the orientation is
respected, the surface integral over a geometric surface is well defined,
independent of the parametrization. That is, for two parametrizations
Φ1 and Φ2, describing the same geometric surface (including the
orientation), then ∫∫

Φ1

F · dS =
∫∫

Φ2

F · dS.

Their common value is denoted∫∫
S

F · dS.

10. Normal Component. Since dS = n dS, we find that∫∫
S

F · dS =
∫∫

S

(F · n) dS,

that is, the surface integral of the vector function F is equal to the
scalar integral of the normal component of F.

11. Physical Interpretation. If F represents the velocity field of a fluid,
then the surface integral ∫∫

S

F · dS.

represents the rate of flow of fluid across the surface. For example, one
can talk about an imaginary surface across a creek, where the flow
rate might be measured in cubic meters per second. For other vector
fields, the surface integral is called the flux. Figure 7.6.1 indicates
why the flux is the integral of the normal component.
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y

x

F

n

Figure 7.6.1. The flux across a surface (a line in two dimensions) is the integral of the

normal component of the vector field.

12. Gauss’ Law. This says (in appropriate units) that∫∫
S

E · dS = Q,

where E is the electric field caused by a charge distribution and Q is
the total charge enclosed by the surface S.

13. Coulomb’s law. If the charge is symmetrically placed, S is chosen
to be a sphere, and one assumes (as is reasonable) that the electric
field is E = En, then one finds that

E =
Q

4πR2

and in particular, for a point charge, one gets Coulomb’s law stating
that the above gives a formula for the field of a point charge.
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7.7 Applications: Differential Geometry,
Physics, Forms of Life

Key Points in this Section.

1. The theory of curvature for surfaces is one of the most exciting chap-
ters in the history of mathematics, in part because it is a core idea
in Einstein’s General Theory of Relativity.

2. The Gauss curvature K(p) of a surface S at a point P is given by

K(p) =
ln − m2

W

and the mean curvature H(p) at P is given by

H(p) =
Gl + En − 2Fm

2W
,

where, if S is parameterized by the mapping Φ,

l = N · Φuu

m = N · Φuv

n = N · Φvv

and
N =

Tu × Tv√
W

, W = ‖Tu × Tv‖2 = EG − F

and
E = ‖Φu‖2

, F = Φu · Φv, G = ‖Φv‖2.
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8
The Integral Theorems of Vector
Analysis
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8.1 Green’s Theorem

Key Points in this Section.

1. Statement of Green’s Theorem. For a simple region D with
bounding curve C = ∂D and two C1 functions P and Q on D, we
have ∫

C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy

2. Orientation. The orientation is chosen so that as you proceed along
the boundary curve in the positive direction, the region is on your left.
For simple regions this means that you go around the regions counter-
clockwise; if there are holes inside the region, those boundaries get
traversed clockwise.

3. Strategy of the Proof. For a y-simple region, one proves by reduc-
tion to iterated integrals, the Fundamental Theorem of Calculus and
the definition of the line integral that∫

C

P dx = −
∫∫

D

(
∂P

∂y

)
dx dy

Similarly, for a x-simple region, we have∫
C

Q dy =
∫∫

D

(
∂Q

∂x

)
dx dy

One gets Green’s theorem for simple regions by simply adding these
two results.

4. More General Regions. One gets Green’s theorem for more general
regions by breaking up a given region into simple ones as in Figure
8.1.5 of the Text. Here is another example of how to break up a region.
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x  

y 

Figure 8.1.1. How to break a two-holed region up into simple regions.

5. Area. As a special case of Green’s theorem, one finds that the area
of a region is

A =
1
2

∫
∂D

x dy − y dx

6. Vector form of Green’s theorem. If F is a vector field in the
plane, then ∫

∂D

F · ds =
∫∫

D

(∇× F) · k dx dy.

This is proved by simply writing F = P i + Qj and applying Green’s
theorem and noting that

∇× F =
(

∂Q

∂x
− ∂P

∂y

)
k.

7. Divergence theorem in the plane. This result says that∫
∂D

F · n ds =
∫∫

D

(div F) dx dy.

where n is the outward normal to the boundary. This is proved by
again writing F = P i + Qj and noting that the unit outward normal
is given by

n =
y′i − x′j√

(x′)2 + (y′)2
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using
ds =

√
(x′)2 + (y′)2 dt,

substituting into the left side to get∫
∂D

P dy − Qdx,

and then using Green’s theorem.
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8.2 Stokes’ Theorem

Key Points in this Section.

1. Statement of Stoke’s Theorem. Let S be the oriented surface
defined by the graph of a C2 function z = f(x, y), where (x, y) ∈ D,
a region in the plane to which Green’s theorem applies, and let F be
a C1 vector field on a region containing the surface. If ∂S denotes the
oriented boundary curve of S, then∫∫

S

curlF · dS =
∫∫

S

(∇× F) · dS =
∫

∂S

F · ds.

2. The main idea in the proof of this result is to reduce the problem to
Green’s theorem over the region D by everywhere substituting z in
terms of x and y.

3. The same statement holds for parametrized surfaces as well, and the
main idea of the proof is the same; this time one reduces it to Green’s
theorem by substituting for x, y and z their expressions in terms of
the surface parameters, u and v.

4. The default orientation for graphs is that the surface is oriented by
the upward pointing normal vector; that is, by

n = −∂g

∂y
i − ∂g

∂x
j + k

(note that this vector need not be a unit vector). One traverses the
boundary in the same way as one traverses the boundary in the do-
main D as in Green’s theorem.

5. For a parametrized surface, if one’s head is pointing in the direction
of the chosen normal vector (which determines the orientation of the
surface), and if one walks along the boundary curve ∂S in the correct
oriented direction, then the surface is on your left. (If the surface is
on your right, then you are going in the wrong direction and you must
change direction or change the orientation of the surface).

6. Stokes’ Theorem together with the mean value theorem gives the
interpretation of the curl of a vector field F as the circulation per
unit area. That is, if we choose a point P and a unit vector n at this
point, then

(curlF(P)) · n = lim
ρ→0

1
A(Sρ)

∫
∂Sρ

F · ds

where Sρ is a disk of radius ρ in the plane perpendicular to n and
centered at the point P and A(Sρ) = πρ2 is its area (shapes other
than disks can be used just as well).
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7. The interpretation of the curl as circulation per unit area is useful in
deriving formulas for the curl in cylindrical and spherical coordinates.
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8.3 Conservative Fields

Key Points in this Section.

1. The main result in this section states that the following statements
concerning a vector field F defined and C1 on all of R

3 are equivalent:

(a) The integral of F around any closed loop is zero

(b) The integral of F from one point to another is independent of
the path taken between those points

(c) F is a gradient field

(d) ∇× F = 0.

2. A similar result holds in the plane (where the curl is interpreted as
the scalar curl)

3. Stokes’ theorem is used to show that if F is curl free, then its integral
around a closed loop is zero.

4. If F is not defined at a finite number of points in R
3, then the same

result is true. This does not necessarily hold in the plane. (A counter
example is given in Exercise 12).

5. Special Case: In the plane, a vector field F = P i+Qj defined and C1

everywhere, is a gradient if and only if

∂P

∂y
=

∂Q

∂x
.
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8.4 Gauss’ Theorem

Key Points in this Section.

1. If S is a closed surface enclosing a region W , we adopted the conven-
tion that S = ∂W is given the outward orientation, with outward
unit normal denoted by n(x, y, z) at each point (x, y, z) of S. If we
denote the surface with the opposite (inward) orientation by ∂Wop,
then the associated unit normal direction for this orientation is −n.
Thus,∫∫

∂W

F ·dS =
∫∫

S

(F ·n)dS = −
∫∫

S

[F · (−n)]dS = −
∫∫

∂Wop

F ·dS.

2. Gauss’ Divergence Theorem states that for a (symmetric, elemen-
tary) region W with boundary ∂W oriented by the outward pointing
unit normal and if F is a smooth vector field defined on W , then∫∫∫

W

(∇ · F)dV =
∫∫

∂W

F · dS.

3. The key idea of the proof is to proceed in these steps:

(a) Write F = P i + Qj + Rk so that

∇ · F = ∂P/∂x + ∂Q/∂y + ∂R/∂z.

(b) Establish the separate identities∫∫∫
W

∂P

∂x
dV =

∫∫
∂W

P i · dS∫∫∫
W

∂Q

∂y
dV =

∫∫
∂W

Qj · dS∫∫∫
W

∂R

∂z
dV =

∫∫
∂W

Rk · dS,

which is parallel to what was done in the proof of Green’s the-
orem.

(c) Adding these identities gives the divergence theorem

(d) To establish the above identities, proceed in a manner similar to
Green’s theorem, namely reduce the triple integral to a double
+ single integral and apply the fundamental theorem of calculus
to the single integral.
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(e) For the third identity (the one involving R), for instance, write
the region as that between the graphs of two functions z =
f2(x, y) and z = f1(x, y) over a region D in the xy-plane. Then,∫∫∫

W

∂R

∂z
dV =

∫∫
D

[∫ z=f2(x,y)

z=f1(x,y)

∂R

∂z
dz

]
dx dy

=
∫∫

D

[R(x, y, f2(x, y)) − R(x, y, f1(x, y))] dx dy.

(f) Write out the boundary integral using the formulas for the sur-
face element of the bounding graphs:

dS =
(
−∂f2

∂x
i − ∂f2

∂y
j + k

)
dx dy,

and

dS =
(
−∂f1

∂x
i − ∂f1

∂y
j − k

)
dx dy,

(g) Note that on the upper surface

Rk · dS = R(x, y, f2(x, y)) dx dy

while on the lower surface,

Rk · dS = −R(x, y, f1(x, y)) dx dy

(h) There is no contribution to the surface integral from the sides of
the region as Rk and dS are orthogonal. Comparing this with
the preceding formula for the triple integral of ∂R/∂z gives the
result.

4. As with Green’s and Stokes’ Theorems, the result is seen to be valid
on a more general region, by breaking it up into a union of symmetric
elementary regions.

5. From the divergence theorem and the mean value theorem, it follows
that

∇ · F(P ) = lim
ρ→0

1
V (Wρ)

∫∫
∂Wρ

F · dS

where Wρ is a family of regions that approaches the point P as ρ tends
to zero. This makes precise the idea (already discussed in Chapter 4)
that the divergence is the net outward flux per unit volume.

6. A vector field F is called divergence free or incompressible when
∇·F = 0. By the divergence theorem this is equivalent to the property
that the flux of F out of any surface is zero. This agrees with the
earlier intuition about the divergence as the rate of change of volume
under motion along flow lines.
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7. Gauss’ Law states that for a region W containing the origin,∫∫
∂W

r · dS
r3

= 4π

(the integral is zero if the region does not contain the origin). This
is a good example where students must be a little careful with places
where the integrand is not defined. One uses the divergence theorem
to write ∫∫

∂W

r · dS
r3

=
∫∫∫

W

∇ · r
r3

dV

but for r �= 0, ∇ · (r/r3) = 0. Thus, one can deform the region to
that of a small sphere surrounding the origin and for the sphere one
evaluates the integral easily to be 4π.
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8.5 Applications: Physics, Engineering &
Differential Equations

Key Points in this Section.

1. The law of conservation of mass for a vector field V and a func-
tion ρ, is the condition

d

dt

∫∫∫
W

ρ dV = −
∫∫

∂W

J · n dA

where J = ρV and where W is an arbitrary region in R
3.

2. The divergence theorem shows that conservation of mass is equivalent
to the continuity equation

div J +
∂ρ

∂t
= 0.

3. The material derivative of a function f with respect to a vector
field F is

Df

Dt
=

∂f

∂t
+ ∇f · F.

4. If φ(x, t) is the flow of the vector field F, (that is, φ(x, 0) = x and
the map t �→ φ(x, t) for each fixed x is a flow line of F ), and J is the
Jacobian determinant of the flow map x �→ φ(x, t), then

∂J

∂t
= J div F

and the transport theorem holds for any function f of (x, y, z, t):

d

dt

∫∫∫
Wt

f dV =
∫∫∫

Wt

(
Df

Dt
+ f div F

)
dV

where Wt is the image of a region W in R
3 under the flow map.

5. Euler’s equation for a perfect fluid is

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇p

where V is the fluid velocity field, ρ is the fluid density and p is the
pressure.

6. Conservation of energy applied to heat energy gives the heat equa-
tion:

∂T

∂t
= k∇2T,

where T is the temperature and k is the material heat conductivity.
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7. Maxwell’s equations for an electric field E and a magnetic field H
state that

div E = ρ

div H = 0

curlE +
∂H
∂t

= 0

curlH − ∂E
∂t

= J,

where ρ is the charge density and J is the current.

8. Stokes’ and Gauss’ theorems are the key to understanding the integral
versions of these equations. For example, the integral version of the
last of Maxwell’s equations is Faraday’s law, which was studied in
§8.2 (see Example 5).
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8.6 Differential Forms

Key Points in this Section.

1. 0-forms are real valued functions

2. 1-forms have the expression

ω = P dx + Q dy + R dz.

3. 2-forms have the expression

η = Fdxdy + Gdydz + Hdzdx,

4. 3-forms have the expression

ν = f(x, y, z)dxdydz.

5. The integral of a 1-form corresponds to a line integral, of a 2-form to
a surface integral and of a 3-form to a volume integral.

6. The basic operations on forms involve the wedge operation, written
ω ∧ η and the d operation, written dα.

7. The d operation includes the gradient, divergence and curl into one
operation.

8. The general Stokes’ theorem reads∫
∂S

ω =
∫

S

dω,

where S can be

(a) a curve (one dimensional, and correspondingly, ω is a 0-form and
dω is a 1-form),

(b) a surface in the plane or space, (two dimensional, and corre-
spondingly, ω is a 1-form and dω is a 2-form), or

(c) a solid region in space (three dimensional, and correspondingly,
ω is a 2-form and dω is a 3-form).

9. These three cases correspond to the Fundamental Theorem of Calcu-
lus, to Stokes’ Theorem (or Green’s Theorem if the surface is in the
plane), and to Gauss’ Theorem.


