Homework 1 Solutions

Math 1c Practical, 2008

All questions are from the Linear Algebra text, O’Nan and Enderton

Question 1: 6.4.2 Apply Gram-Schmidt orthogonalization to the following

1 8 0
sequence of vectors in R3: | 2 |, 11,10
0 —6 1
1 8
Solution Apply the process on page 365, withx; = | 2 | ;x5 = 1 |,z3=
0 —6
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Step 1 produces an orthogonal basis:
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Step 2 produces an orthonormal basis by replacing each vector with a vector of
norm 1:
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So the final solution is vq = % 2 [,bue=3]| -1 |,v3= ﬁ -2
| 0 -2 5
1 -2 —4 20
Question 2: 6.4.10Let A= | 2 —5 -3 | andz= | —16 | and express
3 -7 -7 14

x as the sum of a vector in the row space of A and a vector in the nullspace of A.

Solution We proceed as in Example 5 on page 369. We must find vectors x,, €
nullspace(A4) and z, € rowspace(A) such that © = z,, +x,. We find the reduced

1 0 —-14 14
row echelon form of A, whichis | 0 1 —5 |. Since nullspace(A)=sp 5
0 0 0 1
14
is 1-dimensional, let’s project onto the nullspace of A. Clearly 5 | is an or-
1

thogonal basis for nullspace(A). So we can use the Second Projection Theorem
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to find the projection of x onto nullspace(A): z, = 5 | =
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14 ]
2071 5 |. Then z, is whatever is left over: z, = z — z, =
1
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Question 3: 6.4.13 For the space R?, let w; =
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and let W = sp{w1,wz}. (a) Find a basis for W consisting of two or-

thogonal vectors. (b) express y as the sum of a vector in W and a vector in W+.

Solution (a) Apply step 1 of Gram-Schmidt:
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This gives us an orthogonal basis 111 29 for W.
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(b) We must find vectors w € W and w’ € W2 such that y = w + w'. Us-
ing our orthogonal basis from (a) and the Second Projection Theorem, we get
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6 3 3
is whatever is left over: v’ =y —w = g - i’ = _il))
0 1 -1

Question 4: 6.5.4 Let u and v be orthogonal vectors. If v + v and u — v are
orthogonal, show that |u| = |v|.

Solution u + v and u — v are orthogonal = 0 = (v + v,u —v) = (u,u —
v) + (v,u —v) = (u,u) — (u,v) + (v,u) — (v,v) = (u,u) — (v,v) since u and v

are orthogonal. Hence (u,u) = (v,v) = /(u,u) = v/(v,v) = |u| = |v]|.

Question 5: 6.5.5 Let T be a linear operator on R?. Suppose that T has the
following property: whenever a and b are orthogonal, then 7T'(a) and T'(b) are
orthogonal. Show that T is a scalar multiple of an isometry. [Hint: let u = T'(%)
and v = T'(j). Use the preceding exercise to show that |u| = |v|.]

Solution Recall in R?, i = [ (1) ] and j = [ (1) } Clearly i and j are or-

1
1
too. Hence by hypothesis, T'(i) and T'(j) is an orthogonal pair, as is T'(i + j)
and T'(i — 7). So by question 6.5.4 above, |T'(i)| = |T(j)].

Now, T is a scalar multiple of the linear operator S, where S(z) = \ji;((f))l By
the first representation theorem, and using the fact |T'(¢)| = |T'(j)|, we get that

thogonal vectors, and the pair i + j = and 1 —j = { 7} } is orthogonal

_ T(3) T(j5) . . . .
Ag = [ o] Tl | where Ag is the 2 x 2 matrix representing S. Since

T(i) L T(j), we calculate that AYA = I,. By definition Ag is an orthogonal
matrix, and so by Theorem 2 on page 376, S is an isometry. So T is a scalar
multiple of the isometry S.

Question 6: 6.5.11 Calculate the orthogonal matrix associated with a rota-
tion of R? of # degrees about the z axis.

Solution Let Rg be the linear operator that is a rotation of R3 by 6 de-

1 cos 0
grees about the z axis. Check that Ry 0 = | sinf |, Ry 1 =
0 0 0
—sinf 0
cosf |, Ry 0 = | 0 |. Hence by the First Representation Theo-
0 1 1
cos —sinf 0
rem, the matrix associated with Ry is | sinf cosf 0
0 0 1

To see that this matrix (call it A) is orthogonal, either calculate that AT A = I,
or use Theorem 2 on page 376 and the fact that Ry is an isometry.



Question 7: 6.5.13 Show that any unitary 2 x 2 matrix of determinant 1 is of

the form b ] where |a|? + |b]? = 1.

a
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Solution Let A = [ c b ], with a,b,c,d € C, be an arbitrary unitary 2 x 2

d (2 2)-12 0]
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matrix of determinant 1. Then A*A = I, = [

giving us the four equations

(1) Jaf? + Je = 1

(2) ab+cd=0

(3)ab+cd=0

(4) b +]d]?* =1

Since det(A)=1, we get a fifth equation (5) ad — bc = 1.

Case 1: @ = 0. Then equation (1) implies |c[?> = 1, so in polar form ¢ = e*.
Plugging a = 0 and ¢ = €' into equation (2) implies d = 0, and into equation
(5) implies b = —e~* = —¢, or ¢ = —b. Hence equation (1) implies |a|?+[b]? = 1
and A = [ 7% 0
Case 2: a # 0. Then we can divide by a, so (3) gives us b = =24, Plug this

into (5) to get ad + %c = 1. Multiply both sides by @ to get |a|*d + |c|[*d = a.

Equation (1) then implies d = a. Equation (2) then implies ¢ = —b. Hence

} is of the correct form.

equation (1) imples |a|? + [b]? =1 and A = _% 2 is of the correct form.

Question 8: 7.1.2(b) Determine the eigenvalues and corresponding eigenspaces

-5 30
of the matrix | —6 4 2
2 -1 1

Solution Call the above matrix A. By Theorem 2(b) on page 386, the eigen-
values of A are the solutions A to det(\ — A) = 0. We solve: det(\] — A) =

A+5 -3 0
det 6 AN—4 —2 =X -A=2xA-1) = XA-1(\+1). So
-2 1 A—-1
the matrix A has three eigenvalues: A = —1,0, 1.
The eigenspace corresponding to an eigenvalue A is ker(Al — A); see page 382.
-3
The eigenspace corresponding to A = —1 is ker(—I — A) = sp —4 since
1
1 0 3
the reduced row echelon form of -1 —Ais | 0 1 4
0 0O
-3
The eigenspace corresponding to A = 0 is ker(—A) = sp -5 since the
1



reduced row echelon form of —A is

o O =
S = O
S Ut W

1
The eigenspace corresponding to A = 1 is ker(I — A) = sp 21 since the
0
1 -3 0
reduced row echelon form of I — A'is | 0 0 1
0 0 0
3 2 =2
Question 9: 7.1.6(c) For the matrix A = [ 4 1 -2 |, find a matrix B
8§ 4 =5

such that B~'AB is diagonal.

Solution We proceed as in Example 3, page 385. We find the eigenvalues of A

A—3 -2 2
by solving 0 = det(A—A) = det -4 A-1 2 =N+ A2 -1
-8 —4 A+5

To factor this cubic polynomial, we try to find a root: we plug in small integers
(0, £1, £2, etc) until we find that 1 is a root. This means that A — 1 is a
factor. Performing long division, we find the factorization A\ + A2 — A — 1 =
(A=1)(A2+2X+1) = (A—=1)(A+1)%. So the eigenvalues of A are A = —1,1. The

1 1
2 2
eigenspace corresponding to A = —1 is ker(—I — A) = sp 11,10
0 1
1 1 _1
2 2
since the reduced row echelon form of —I—Ais | 0 0 0 [. The eigenspace
0 0 0
1
corresponding to A = 1l is ker(I —A) = sp g since the reduced row ech-
1
1 1 1 1
elonformof I-Ais | 0 1 —35 |. The eigenvectors 1,1 01,] 3
0 0 0 0 1 1
are linearly independent, and hence form a basis for R3. So the change of co-
= RE 1 00
ordinate matrix B = 1 0 5 | satisfies B7'AB = 0 -1 0|, a
0 1 1 0 01

diagonal matrix whose diagonal entries are the corresponding eigenvalues.
Question 10: 7.1.8(c) Find a general formula for the nth power of the matrix
2 1
1 2|

Solution This problem would be easy if we were given a diagonal matrix, as



a 01" a® 0 . . . . 2 1
0 b = 0 | This motivates us check if the matrix A = [ 1 9 }

is at least diagonalizable.

We find the cigenvalues of A by solving 0 — det(A —A) — det ([ Ao2 -1 D _

-1 A-2
AN —4X+3 = (A=1)(A = 3). So the eigenvalues of A are A = 1,3. The

eigenspace corresponding to A = 1 is ker(I — A) = sp{[ _} }} since the

reduced row echelon form of I — A is (1) (1) . The eigenspace correspond-
ing to A = 3 is ker(I — A) = sp L since the reduced row echelon form

1
. 1 -1 . -1 1 . .
of 31 — A is { 0 0 ] The eigenvectors [ 1 ] , [ 1 } are linearly inde-

pendent, and hence form a basis for R2. So the change of coordinate matrix

-1 1 . 1 B |10
B = 11 } satisfies B~"AB = C, where C = [ 0 3
nal matrix whose diagonal entries are the corresponding eigenvalues. Equiv-

alently, BOB~! = A. Now, we can solve the problem: A" = (BCB~ )" =
(BCB~Y)(BCB™Y)..(BCB~') = BC"B~! since B"'B = I. Hence, A" =

n —1
-1 1 1 0 -1 1 -1 1 1m0 -1
npR—1 _ _
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} is the diago-

. This is a general formula for the nth power of the matrix
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