Homework 1 Solutions

Math 1c Practical, 2008

All questions are from the Linear Algebra text, O'Nan and Enderton
Question 1: 6.4.2 Apply Gram-Schmidt orthogonalization to the following sequence of vectors in $\mathbb{R}^{3}:\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}8 \\ 1 \\ -6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Solution Apply the process on page 365 , with $x_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{r}8 \\ 1 \\ -6\end{array}\right], x_{3}=$ $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Step 1 produces an orthogonal basis:
$v_{1}=x_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$.
$v_{2}=x_{2}-\frac{\left(x_{2}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}=\left[\begin{array}{r}8 \\ 1 \\ -6\end{array}\right]-\frac{\left(\left[\begin{array}{r}8 \\ 1 \\ -6\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)}{\left(\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{r}8 \\ 1 \\ -6\end{array}\right]-\frac{10}{5}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=$ $\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]$.
$v_{3}=x_{3}-\frac{\left(x_{3}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}-\frac{\left(x_{3}, v_{2}\right)}{\left(v_{2}, v_{2}\right)} v_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]-\frac{\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)}{\left(\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right)}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]-\frac{\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]\right)}{\left(\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right],\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]\right)}\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]=$
$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]-\frac{0}{5}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]-\frac{-6}{81}\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]=\frac{1}{9}\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right]$.

Step 2 produces an orthonormal basis by replacing each vector with a vector of norm 1:
Replace v_{1} with $\frac{v_{1}}{\left|v_{1}\right|}=\frac{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]}{\left|\left[\begin{array}{c}1 \\ 2 \\ 0\end{array}\right]\right|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$.
Replace v_{2} with $\frac{v_{2}}{\left|v_{2}\right|}=\frac{\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]}{\left|\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]\right|}=\frac{1}{9}\left[\begin{array}{r}6 \\ -3 \\ -6\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}2 \\ -1 \\ -2\end{array}\right]$.
Replace v_{3} with $\frac{v_{3}}{\left|v_{3}\right|}=\frac{\frac{1}{9}\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right]}{\left|\frac{1}{9}\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right]\right|}=\frac{1}{3 \sqrt{5}}\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right]$.
So the final solution is $v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], v_{2}=\frac{1}{3}\left[\begin{array}{r}2 \\ -1 \\ -2\end{array}\right], v_{3}=\frac{1}{3 \sqrt{5}}\left[\begin{array}{r}4 \\ -2 \\ 5\end{array}\right]$.
Question 2: 6.4.10 Let $A=\left[\begin{array}{lll}1 & -2 & -4 \\ 2 & -5 & -3 \\ 3 & -7 & -7\end{array}\right]$ and $x=\left[\begin{array}{r}20 \\ -16 \\ 14\end{array}\right]$ and express x as the sum of a vector in the row space of A and a vector in the nullspace of A.

Solution We proceed as in Example 5 on page 369. We must find vectors $x_{n} \in$ nullspace (A) and $x_{r} \in \operatorname{rowspace}(A)$ such that $x=x_{n}+x_{r}$. We find the reduced row echelon form of A, which is $\left[\begin{array}{rrr}1 & 0 & -14 \\ 0 & 1 & -5 \\ 0 & 0 & 0\end{array}\right]$. Since nullspace $(A)=\operatorname{sp}\left\{\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]\right\}$ is 1-dimensional, let's project onto the nullspace of A. Clearly $\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]$ is an orthogonal basis for nullspace (A). So we can use the Second Projection Theorem to find the projection of x onto nullspace $(A): x_{n}=\frac{\left(\left[\begin{array}{r}20 \\ -16 \\ 14\end{array}\right],\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]\right)}{\left(\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]\right)}\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]=$
$\frac{107}{111}\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]$. Then x_{r} is whatever is left over: $x_{r}=x-x_{n}=\left[\begin{array}{r}20 \\ -16 \\ 14\end{array}\right]-$
$\frac{107}{111}\left[\begin{array}{r}14 \\ 5 \\ 1\end{array}\right]=\frac{1}{111}\left[\begin{array}{r}722 \\ -2311 \\ 1447\end{array}\right]$.
Question 3: 6.4.13 For the space \mathbb{R}^{4}, let $w_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], w_{2}=\left[\begin{array}{r}3 \\ 3 \\ -1 \\ -1\end{array}\right]$, $y=\left[\begin{array}{l}6 \\ 0 \\ 2 \\ 0\end{array}\right]$ and let $W=\operatorname{sp}\left\{w_{1}, w_{2}\right\}$. (a) Find a basis for W consisting of two orthogonal vectors. (b) express y as the sum of a vector in W and a vector in W^{\perp}.

Solution (a) Apply step 1 of Gram-Schmidt:
$v_{1}=w_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
$v_{2}=w_{2}-\frac{\left(w_{2}, v_{1}\right)}{\left(v_{1}, v_{1}\right)} v_{1}=\left[\begin{array}{r}3 \\ 3 \\ -1 \\ -1\end{array}\right]-\frac{\left(\left[\begin{array}{r}3 \\ 3 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)}{\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right]$.
This gives us an orthogonal basis $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right]$ for W.
(b) We must find vectors $w \in W$ and $w^{\prime} \in W^{\perp}$ such that $y=w+w^{\prime}$. Using our orthogonal basis from (a) and the Second Projection Theorem, we get $w=\frac{\left(\left[\begin{array}{l}6 \\ 0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)}{\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right)}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]+\frac{\left(\left[\begin{array}{l}6 \\ 0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right]\right)}{\left(\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right]\right)}\left[\begin{array}{r}2 \\ 2 \\ -2 \\ -2\end{array}\right]=\left[\begin{array}{l}3 \\ 3 \\ 1 \\ 1\end{array}\right]$. Then w^{\prime}
is whatever is left over: $w^{\prime}=y-w=\left[\begin{array}{l}6 \\ 0 \\ 2 \\ 0\end{array}\right]-\left[\begin{array}{l}3 \\ 3 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}3 \\ -3 \\ 1 \\ -1\end{array}\right]$.
Question 4: 6.5.4 Let u and v be orthogonal vectors. If $u+v$ and $u-v$ are orthogonal, show that $|u|=|v|$.

Solution $u+v$ and $u-v$ are orthogonal $\Rightarrow 0=(u+v, u-v)=(u, u-$ $v)+(v, u-v)=(u, u)-(u, v)+(v, u)-(v, v)=(u, u)-(v, v)$ since u and v are orthogonal. Hence $(u, u)=(v, v) \Rightarrow \sqrt{(u, u)}=\sqrt{(v, v)} \Rightarrow|u|=|v|$.

Question 5: 6.5.5 Let T be a linear operator on \mathbb{R}^{2}. Suppose that T has the following property: whenever a and b are orthogonal, then $T(a)$ and $T(b)$ are orthogonal. Show that T is a scalar multiple of an isometry. [Hint: let $u=T(i)$ and $v=T(j)$. Use the preceding exercise to show that $|u|=|v|$.]

Solution Recall in $\mathbb{R}^{2}, i=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $j=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Clearly i and j are orthogonal vectors, and the pair $i+j=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $i-j=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is orthogonal too. Hence by hypothesis, $T(i)$ and $T(j)$ is an orthogonal pair, as is $T(i+j)$ and $T(i-j)$. So by question 6.5.4 above, $|T(i)|=|T(j)|$.
Now, T is a scalar multiple of the linear operator S, where $S(x)=\frac{T(x)}{|T(i)|}$. By the first representation theorem, and using the fact $|T(i)|=|T(j)|$, we get that $A_{S}=\left[\begin{array}{cc}\frac{T(i)}{|T(i)|} & \frac{T(j)}{|T(j)|}\end{array}\right]$, where A_{S} is the 2×2 matrix representing S. Since $T(i) \perp T(j)$, we calculate that $A_{S}^{t r} A=I_{2}$. By definition A_{S} is an orthogonal matrix, and so by Theorem 2 on page $376, S$ is an isometry. So T is a scalar multiple of the isometry S.

Question 6: 6.5.11 Calculate the orthogonal matrix associated with a rotation of \mathbb{R}^{3} of θ degrees about the z axis.

Solution Let R_{θ} be the linear operator that is a rotation of \mathbb{R}^{3} by θ degrees about the z axis. Check that $R_{\theta}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}\cos \theta \\ \sin \theta \\ 0\end{array}\right], R_{\theta}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=$ $\left[\begin{array}{r}-\sin \theta \\ \cos \theta \\ 0\end{array}\right], R_{\theta}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Hence by the First Representation Theorem, the matrix associated with R_{θ} is $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$.
To see that this matrix (call it A) is orthogonal, either calculate that $A^{T} A=I_{3}$, or use Theorem 2 on page 376 and the fact that R_{θ} is an isometry.

Question 7: 6.5.13 Show that any unitary 2×2 matrix of determinant 1 is of the form $\left[\begin{array}{rr}a & b \\ -\bar{b} & \bar{a}\end{array}\right]$ where $|a|^{2}+|b|^{2}=1$.
Solution Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, with $a, b, c, d \in \mathbb{C}$, be an arbitrary unitary 2×2 matrix of determinant 1. Then $A^{*} A=I_{2} \Rightarrow\left[\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right]\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, giving us the four equations
(1) $|a|^{2}+|c|^{2}=1$
(2) $a \bar{b}+c \bar{d}=0$
(3) $\bar{a} b+\bar{c} d=0$
(4) $|b|^{2}+|d|^{2}=1$

Since $\operatorname{det}(A)=1$, we get a fifth equation (5) $a d-b c=1$.
Case 1: $a=0$. Then equation (1) implies $|c|^{2}=1$, so in polar form $c=e^{i \theta}$. Plugging $a=0$ and $c=e^{i \theta}$ into equation (2) implies $d=0$, and into equation (5) implies $b=-e^{-i \theta}=-\bar{c}$, or $c=-\bar{b}$. Hence equation (1) implies $|a|^{2}+|b|^{2}=1$ and $A=\left[\begin{array}{rr}0 & b \\ -\bar{b} & 0\end{array}\right]$ is of the correct form.
Case 2: $a \neq 0$. Then we can divide by \bar{a}, so (3) gives us $b=\frac{-\bar{c} d}{\bar{a}}$. Plug this into (5) to get $a d+\frac{\bar{c} d}{\bar{a}} c=1$. Multiply both sides by \bar{a} to get $|a|^{2} d+|c|^{2} d=\bar{a}$. Equation (1) then implies $d=\bar{a}$. Equation (2) then implies $c=-\bar{b}$. Hence equation (1) imples $|a|^{2}+|b|^{2}=1$ and $A=\left[\begin{array}{rr}a & b \\ -\bar{b} & \bar{a}\end{array}\right]$ is of the correct form.
Question 8: 7.1.2(b) Determine the eigenvalues and corresponding eigenspaces of the matrix $\left[\begin{array}{rrr}-5 & 3 & 0 \\ -6 & 4 & 2 \\ 2 & -1 & 1\end{array}\right]$.
Solution Call the above matrix A. By Theorem 2(b) on page 386, the eigenvalues of A are the solutions λ to $\operatorname{det}(\lambda I-A)=0$. We solve: $\operatorname{det}(\lambda I-A)=$ $\operatorname{det}\left(\left[\begin{array}{rrr}\lambda+5 & -3 & 0 \\ 6 & \lambda-4 & -2 \\ -2 & 1 & \lambda-1\end{array}\right]\right)=\lambda^{3}-\lambda=\lambda\left(\lambda^{2}-1\right)=\lambda(\lambda-1)(\lambda+1)$. So the matrix A has three eigenvalues: $\lambda=-1,0,1$.
The eigenspace corresponding to an eigenvalue λ is $\operatorname{ker}(\lambda I-A)$; see page 382 .
The eigenspace corresponding to $\lambda=-1$ is $\operatorname{ker}(-I-A)=\operatorname{sp}\left\{\left[\begin{array}{r}-3 \\ -4 \\ 1\end{array}\right]\right\}$ since
the reduced row echelon form of $-I-A$ is $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0\end{array}\right]$.
The eigenspace corresponding to $\lambda=0$ is $\operatorname{ker}(-A)=\operatorname{sp}\left\{\left[\begin{array}{r}-3 \\ -5 \\ 1\end{array}\right]\right\}$ since the
reduced row echelon form of $-A$ is $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0\end{array}\right]$.
The eigenspace corresponding to $\lambda=1$ is $\operatorname{ker}(I-A)=s p\left\{\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 0\end{array}\right]\right\}$ since the reduced row echelon form of $I-A$ is $\left[\begin{array}{rrr}1 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
Question 9: 7.1.6(c) For the matrix $A=\left[\begin{array}{lll}3 & 2 & -2 \\ 4 & 1 & -2 \\ 8 & 4 & -5\end{array}\right]$, find a matrix B such that $B^{-1} A B$ is diagonal.

Solution We proceed as in Example 3, page 385. We find the eigenvalues of A by solving $0=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{rrr}\lambda-3 & -2 & 2 \\ -4 & \lambda-1 & 2 \\ -8 & -4 & \lambda+5\end{array}\right]\right)=\lambda^{3}+\lambda^{2}-\lambda-1$.
To factor this cubic polynomial, we try to find a root: we plug in small integers ($0, \pm 1, \pm 2$, etc) until we find that 1 is a root. This means that $\lambda-1$ is a factor. Performing long division, we find the factorization $\lambda^{3}+\lambda^{2}-\lambda-1=$ $(\lambda-1)\left(\lambda^{2}+2 \lambda+1\right)=(\lambda-1)(\lambda+1)^{2}$. So the eigenvalues of A are $\lambda=-1,1$. The eigenspace corresponding to $\lambda=-1$ is $\operatorname{ker}(-I-A)=\operatorname{sp}\left\{\left[\begin{array}{r}-\frac{1}{2} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}\frac{1}{2} \\ 0 \\ 1\end{array}\right]\right\}$ since the reduced row echelon form of $-I-A$ is $\left[\begin{array}{ccc}1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. The eigenspace corresponding to $\lambda=1$ is $\operatorname{ker}(I-A)=\operatorname{sp}\left\{\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]\right\}$ since the reduced row echelon form of $I-A$ is $\left[\begin{array}{rrr}1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0\end{array}\right]$. The eigenvectors $\left[\begin{array}{r}-\frac{1}{2} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$ are linearly independent, and hence form a basis for \mathbb{R}^{3}. So the change of coordinate matrix $B=\left[\begin{array}{rrr}-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1\end{array}\right]$ satisfies $B^{-1} A B=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$, a diagonal matrix whose diagonal entries are the corresponding eigenvalues.

Question 10: 7.1.8(c) Find a general formula for the nth power of the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
Solution This problem would be easy if we were given a diagonal matrix, as
$\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]^{n}=\left[\begin{array}{rr}a^{n} & 0 \\ 0 & b^{n}\end{array}\right]$. This motivates us check if the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is at least diagonalizable.
We find the eigenvalues of A by solving $0=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{rr}\lambda-2 & -1 \\ -1 & \lambda-2\end{array}\right]\right)=$ $\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)$. So the eigenvalues of A are $\lambda=1,3$. The eigenspace corresponding to $\lambda=1$ is $\operatorname{ker}(I-A)=\operatorname{sp}\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$ since the reduced row echelon form of $I-A$ is $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. The eigenspace corresponding to $\lambda=3$ is $\operatorname{ker}(I-A)=s p\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ since the reduced row echelon form of $3 I-A$ is $\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$. The eigenvectors $\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are linearly independent, and hence form a basis for \mathbb{R}^{2}. So the change of coordinate matrix $B=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$ satisfies $B^{-1} A B=C$, where $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ is the diagonal matrix whose diagonal entries are the corresponding eigenvalues. Equivalently, $B C B^{-1}=A$. Now, we can solve the problem: $A^{n}=\left(B C B^{-1}\right)^{n}=$ $\left(B C B^{-1}\right)\left(B C B^{-1}\right) \ldots\left(B C B^{-1}\right)=B C^{n} B^{-1}$ since $B^{-1} B=I$. Hence, $A^{n}=$ $B C^{n} B^{-1}=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]^{n}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rr}1^{n} & 0 \\ 0 & 3^{n}\end{array}\right]\left[\begin{array}{rr}-\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]=$ $\frac{1}{2}\left[\begin{array}{ll}3^{n}+1 & 3^{n}-1 \\ 3^{n}-1 & 3^{n}+1\end{array}\right]$. This is a general formula for the nth power of the matrix A.

