
Ma 1c Practical - Solutions to Homework Set 7

All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth
Edition)

Exercise 7.4.6. Find the area of the portion of the unit sphere that is cut out by
the cone

z ≥
√
x2 + y2.

Solution. The intersection of the unit sphere and the cone z =
√
x2 + y2 is found

by solving the equations

x2 + y2 + z2 = 1 and x2 + y2 − z2 = 0

(with z ≥ 0), which is easily done by subtracting these two equations. This gives
the circle described by z = 1/

√
2 and x2 + y2 = 1/2, as in Figure 1. We are to find

the area of the surface above this circle.
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Figure 1. Find the area of the “ice cream” part of this surface.

Notice that the triangle AOB has two sides of length 1/
√

2, and hypotenuse
of length 1, so the vertex angle AOB is π/4. Using this geometry and spherical
coordinates, we find that a parametrization is

x = sinφ cos θ
y = sinφ sin θ
z = cosφ,

for 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
4 . We find that

Area =
∫ 2π

0

∫ π
4

0

sinφdφ dθ

=

(
1−
√

2
2

)
2π

= (2−
√

2)π. ♦
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Exercise 7.5.2. Evaluate ∫∫
S

xyz dS

where S is the triangle with vertices (1, 0, 0), (0, 2, 0) and (0, 1, 1).

Solution. The triangle is contained in a plane whose equation is of the form ax +
by + cz + d = 0. Since (1, 0, 0) lies on it, a+ d = 0, so a = −d. Since (0, 2, 0) is on
it, b = − 1

2d. Since (0, 1, 1) is on it, b + c = −d, so c = −d + 1
2d = − 1

2d. Letting
d = −2, we get 2x+ y + z − 2 = 0 i.e., the equation of the plane is given by

2x+ y + z = 2.

See Figure 7.5.2.
A normal vector is obtained from the coefficients as (2, 1, 1), so a unit normal is

n =
1√
6

(2i + j + k).

The domain D in the xy plane is the triangle with vertices (1, 0), (0, 2) and (0, 1),
as in Figure 2.
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Figure 2. The domain D in the xy-plane for plane in Exercise 2 regarded

as a graph: z = 2− 2x− y.

Now

dS =
dx dy

n · k
=
√

6 dx dy,

and so ∫∫
S

f dS =
∫∫

D

xy(2− 2x− y)
√

6 dx dy

=
√

6
∫ 1

0

∫ 2(1−x)

1−x
[2(x− x2)y − xy2]dy dx
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Carrying out the y-integration gives∫∫
S

f dS =
√

6
∫ 1

0

(
2(x− x2)

y2

2
− xy3

3

)∣∣∣∣2(1−x)
1−x

dx

=
√

6
∫ 1

0

[
2x(1− x)

(
[2(1− x)]2

2
− [1− x]2

2

)
−x

3
([2(1− x)]3 − (1− x)3)

]
dx

=
√

6
∫ 1

0

2
3
x(1− x)3dx =

√
6
∫ 1

0

2
3
· 1

4
(1− x)4dx =

√
6

30
,

where the last steps were done using integration by parts. ♦

Exercise 7.6.3. Let S be the closed surface that consists of the hemisphere x2 +
y2 +z2 = 1, z ≥ 0, and its base x2 +y2 ≤ 1, z = 0. Let E be the electric field defined
by E(x, y, z) = 2xi + 2yj + 2zk. Find the electric flux across S.

Solution. Write S = H ∪ D where H is the upper hemisphere and D is the disk.
Hence ∫∫

S

E · dS =
∫∫

H

E · dS +
∫∫

D

E · dS.

(i) Let xi + yj + zk be the unit normal n pointing outward from H. Then∫∫
H

E · dS =
∫∫

H

E · n dS =
∫∫

H

(2x, 2y, 2z) · (x, y, z)dS

= 2
∫∫

H

(x2 + y2 + z2)dS = 2
∫∫

H

dS = 4π.

(ii) The unit normal is −k and z = 0 on D. Hence,∫∫
D

E · dS =
∫∫

D

E · n dS =
∫∫

D

(2x, 2y, 2z) · (0, 0,−1)dS = 0.

Therefore, ∫∫
S

E · dS = 4π. ♦

Exercise 7.6.15. Let the velocity field of a fluid be given by v = i + xj + zk in
meters/second. How many cubic meters of fluid per second are crossing the surface
x2 + y2 + z2 = 1, z ≥ 0? (Distances are in meters.)

Solution. Here, v · dS = v · n dS and n = xi + yj + zk, so

v · n = x+ xy + z2.

By symmetry, the integrals of x and of xy vanish. Thus, the flux is∫∫
S

v · dS =
∫∫

S

z2dS.

Using spherical coordinates, z = cosφ, so we get∫ π/2

φ=0

∫ 2π

θ=0

cos2 φ sinφdθ dφ = −2π
cos3 φ

3

∣∣∣∣π/2
0

=
2π
3
. ♦
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Exercise 8.1.3(d). Verify Green’s theorem for the disk D with center (0, 0) and
radius R for P = 2y,Q = x.

Solution. Green’s theorem∫
∂D

Pdx+Qdy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy

becomes ∫
∂D

2y dx+ x dy =
∫∫

D

(1− 2)dx dy = −
∫∫

D

dx dy

The right side is −πR2 while the left side is, since x = R cos θ and y = R sin θ,∫ 2π

0

(2R sin θ)(−R sin θ)dθ + (R cos θ)(R cos θ)dθ

= −2R2

∫ 2π

0

sin2 θdθ +R2

∫ 2π

0

cos2 θdθ.

Using the fact that sin2 θ and cos2 θ have averages 1
2 , namely

1
2π

∫ 2π

0

sin2 θdθ =
1
2

(this is one way of remembering the formula for the integrals of sin2 θ and cos2 θ on
[0, 2π] and [0, π]), we get −2R2 ·π+R2 ·π = −πR2. Thus, Green’s theorem checks.
♦

Exercise 8.2.10. Find the surface integral
∫∫

S

(∇× F) · dS, where S is the ellip-

soid x2 + y2 + 2z2 = 10 and F = (sinxy)i + exj− yzk.

Solution. Notice that the ellipsoid S is a closed surface and has no boundary. There-
fore, by Stokes’ theorem,∫∫

S

(∇× F) · dS =
∫
∂S

F · dS = 0. ♦

Note: The same conclusion also follows from the divergence theorem since div curl F =
0.

Exercise 8.2.23. Let F = x2i + (2xy + x)j + zk. Let C be the circle x2 + y2 = 1
in the plane z = 0 oriented counterclockwise and S the disk x2 + y2 ≤ 1 oriented
with the normal vector k. Determine:

(a) The integral of F over S.
(b) The circulation of F around C.
(c) Find the integral of ∇ × F over S. Verify Stokes’ theorem directly in this

case.

Solution.

(a) Notice that F = (x2, 2xy + x, 0) on S. Hence∫∫
S

F · dS =
∫∫

S

(x2, 2xy + x, 0) · (0, 0, 1) dS = 0.
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(b) Let c(t) = (cos t, sin t, 0) be the parameterization of C. Then∫
C

F · dS =
∫ 2π

0

(cos2 t, 2 cos t sin t+ cos t, 0) · (− sin t, cos t, 0)dt

=
∫ 2π

0

(cos2 t sin t+ cos2 t)dt = π.

(c) Routine computation shows that ∇× F = (0, 0, 2y + 1). Hence∫∫
S

(∇× F) · dS =
∫ 1

0

∫ 2π

0

(0, 0, 2r sin θ + 1) · (0, 0, 1)r dθ dr

=
∫ 1

0

∫ 2π

0

(2r sin θ + 1)r dθ dr = π.

Combining the results in (b) and (c), Stokes’ theorem is verified. ♦

Exercise 8.3.14. Determine which of the following vector fields F in the plane is
the gradient of a scalar function f . If such an f exists, find it.

(a) F(x, y) = (cosxy − xy sinxy)i− (x2 sinxy)j
(b) F(x, y) = (x

√
x2y2 + 1)i + (y

√
x2y2 + 1)j

(c) F(x, y) = (2x cos y + cos y)i− (x2 sin y + x sin y)j.

Solution. In this problem, we apply the cross-derivative test. For example, for
problem (a),
∂F1

∂y
− ∂F2

∂x
= (x sinxy − x sinxy − x2y cosxy)− (−2x sinxy − x2y cosxy) = 0,

so F is indeed the gradient of some function on the plane. To find such a function,
we seek f satisfying

∂f

∂y
= F2 = x2 sinxy,

for example, f(x, y) = x cosxy. Note that f is unique only up to an additive that
could be a function of x. However, we don’t need to add it in this case as this
function is checked to have gradient the given vector field.

Part (b) and (c) proceed similarly. One sees that (b) is not a gradient field,
while (c) is a gradient. For part (c), f(x, y) = x2 cos y+ x cos y is a function whose
gradient is the given field.

Exercise 8.4.10. Evaluate the surface integral
∫∫
S
F · n dS, where

F(x, y, z) = i + j + z(x2 + y2)2k

and S is the surface of the cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 1, including the sides and
both lids.

Solution. Use Gauss’ divergence theorem in space:∫∫
S

F · n dS =
∫∫∫

W

(div F)dx dy dz

Here,

div F =
∂

∂x
(1) +

∂

∂y
(1) +

∂

∂z
z(x2 + y2)2 = (x2 + y2)2.

The region W is a cylinder, so it is the easiest to evaluate the integral in cylindrical
coordinates:
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∫ 1

0

∫ 2π

0

∫ 1

0

r · (r2)2 dr dθ dz =
2π
6

=
π

3
. ♦

Exercise 8.4.14. Fix k vectors v1, . . . ,vk in space and numbers (“charges”)
q1, . . . , qk. Define

φ(x, y, z) =
k∑
i=1

qi
4π‖r− vi‖

,

where r = (x, y, z). Show that for a closed surface S and e = −∇φ,∫∫
S

e · dS = Q,

where Q = q1 + · · · + qk is the total charge inside S. Assume that none of the
charges are on S.

Solution. Surround each charge at vector vi by a small ball Bi in such a way that
the Bi are mutually disjoint and do not intersect S. Assume that B1, . . . , Bn,
(where n ≤ k) are those balls contained within S. Then since div e = 0, and as in
Theorem 10, ∫∫

S

e · dS =
n∑
i=1

∫∫
∂Bi

e · dS

where ∂Bi is given the outward orientation. But again, as in Theorem 10,∫∫
∂Bi

e · dS = qi.

Thus, ∫∫
S

e · dS =
n∑
i=1

qi = Q,

the total charge inside S. ♦


