
Ma 1c Practical - Solutions to Homework Set 6

All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition)

Exercise 5.5.4 Evaluate ∫∫∫
B
zex+y dx dy dz

where B = [0, 1]× [0, 1]× [0, 1].

Solution. ∫∫∫
B
zex+y dx dy dz =

∫ 1

0
dx

∫ 1

0
dy

(∫ 1

0
zex · eydz

)
=
∫ 1

0
exdx

∫ 1

0
eydy

∫ 1

0
zdz

=
(

1
2
z2

)∣∣∣∣1
0

(e− 1)2 =
(e− 1)2

2
. ♦

Exercise 5.5.15 Evaluate ∫∫∫
W

(x2 + y2 + z2)dx dy dz,

where W is the region bounded by x+ y + z = a (where a > 0), x = 0, y = 0, and z = 0.

Solution. The set W is shown in the figure.

z

y

x

x�+�y�=�a

x�+�y�+�z�=�a

Figure 1: The region of integration for Exercise 5.5.15.

Note that W is defined by the inequalities

x ≥ 0, y ≥ 0, z ≥ 0, and 0 ≤ x+ y + z ≤ a.
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Thus, ∫∫∫
W

(x2 + y2 + z2)dx dy dz

=
∫ a

0
dx

∫ a−x

0
dy

∫ a−x−y

0
dz(x2 + y2 + z2)

=
∫ a

0
dx

(∫ a−x

0

[
(x2 + y2)(a− x− y) +

1
3

(a− x− y)3
]
dy

)
=
∫ a

0

[
x2(a− x)2 +

1
12

(a− x)4 − 1
2
x2(a− x)2 +

1
12

(a− x)4
]
dx

=
1
2

∫ a

0
(a2x2 − 2ax3 + x4)dx+

1
60

(x− a)5
∣∣∣∣a
0

+
1
60

(x− a)5
∣∣∣∣a
0

=
1
6
a5 − 1

4
a5 +

1
10
a5 +

1
60
a5 +

1
60
a5 =

1
20
a5. ♦

Exercise 6.1.6 Let D∗ be the parallelogram with vertices

(−1, 3), (0, 0), (2,−1) and (1, 2)

and D be the rectangle D = [0, 1]× [0, 1]. Find a transformation T such that D is the image
set of D∗ under T .

Solution. We will seek a linear mapping T with T (D∗) = D. We look for T (u, v) = (x, y)
where

x = au+ bv and y = cu+ dv.

We require vertices to be mapped to vertices in the same clockwise order and observe that
we already have T (0, 0) = (0, 0). Thus, we suppose T (1, 2) = (1, 1), T (−1, 3) = (1, 0) and
T (2,−1) = (0, 1). This gives us three sets of equations

1 = a+ 2b and 1 = c+ 2d
1 = −a+ 3b and 0 = −c+ 3d
0 = 2a− b and 1 = 2c− d.

Using the last line, b = 2a and so from the first equation, we find a = 1/5, b = 2/5 and
similarly from the second line, c = 3d and so from one of the other two equations for c, d,
we get c = 3/5, d = 1/5. Therefore, T (u, v) = (u+ 2v, 3u+ v)/5. ♦

Exercise 6.2.8 Calculate ∫∫
R

dx dy

x+ y
,

where R is the region bounded by x = 0, y = 0, x+y = 1, and x+y = 4 by using the mapping
T (u, v) = (u− uv, uv).
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Solution. The region D, bounded by x = 0, y = 0, x + y = 1 and x + y = 4, is a
quadrilateral. If x = u − uv and y = uv, then u = x + y, and v = y/(x + y). Therefore,
away from the v axis (u = 0), the mapping is one to one. (Note that any portion of the
v axis is mapped to (0, 0).) The pre-image of the interval y = 0, 1 ≤ x ≤ 4 is the interval
1 ≤ u ≤ 4, v = 0. The pre-image of the line x+y = 4, where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4, is the
line described by u = 4, 0 ≤ v ≤ 1. The pre-image of the line x+y = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
is the line u = 1, 0 ≤ v ≤ 1 and finally, the pre-image of the interval x = 0, 1 ≤ y ≤ 4,
is the line v = 1, 1 ≤ u ≤ 4. Thus, D∗ is the rectangle [1, 4] × [0, 1] in the uv plane, and
T : D∗ → D is one to one. The Jacobian determinant is given by

∂(x, y)
∂(u, v)

=
∣∣∣∣ 1− v −u

v u

∣∣∣∣ = u.

Therefore, ∫∫
R

dx dy

x+ y
=
∫∫

D∗

u

u
du dv =

∫ 4

1

∫ 1

0
dv du = 3. ♦

Exercise 6.3.5 A sculptured gold plate D is defined by 0 ≤ x ≤ 2π and 0 ≤ y ≤ π
(centimeters) and has mass density δ(x, y) = y2 sin2 4x + 2 (grams per cm2). If gold sells
for $7 per gram, how much is the gold in the plate worth?

Solution. The mass of the gold plate is given by∫∫
D

(y2 sin2 4x+ 2)dx dy =
∫ π

0

∫ 2π

0
(y2 sin2 4x+ 2)dx dy

=
∫ π

0
y2 dy

∫ 2π

0
sin2 4x dx+ 2π · 2π

=
π3

3
· 1

2
2π + 4π2 =

π4

3
+ 4π2 (grams).

Thus, the price of the plate is 7 · (4π2 + π4

3 ) ≈ $503.64. ♦

Exercise 7.1.4(a) Evaluate the path integral of f(x, y, z) = x cos z along the path c : t 7→
ti + t2j, t ∈ [0, 1].

Solution. The path integral is∫
c
f ds =

∫ 1

0
(t cos 0)

√
1 + 4t2dt

=
∫ 1

0
t(1 + 4t2)1/2 dt

This is readily integrated using the substitution u = 1 + 4t2 and we get

1
12

[(
1 + 4t2

)3/2]∣∣∣1
0

=
1
12

(
53/2 − 1

)
. ♦
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Exercise 7.2.2 Evaluate each of the following integrals:

(a)
∫
c
x dy − y dx, c(t) = (cos t, sin t), 0 ≤ t ≤ 2π

(b)
∫
c
x dx+ y dy, c(t) = (cosπt, sinπt), 0 ≤ t ≤ 2

Solution. (a) By definition,∫
c
x dy − y dx =

∫ 2π

0
[cos t(cos t dt)− (sin t)(− sin t dt)]

=
∫ 2π

0

[
cos2 t+ sin2 t

]
dt =

∫ 2π

0
dt = 2π.

(b) Here, ∫
c
x dx+ y dy =

∫ 2

0
(cosπt)(−π sinπt)dt+

∫ 2

0
(sinπt)(π cosπt)dt

=
[

cos2 πt

2

]∣∣∣∣2
0

+
[

sin2 πt

2

]∣∣∣∣2
0

=
1
2
[
cos2 πt+ sin2 πt

]∣∣2
0

=
1
2

[1]|20 = 0.

Exercise 7.2.18 A cyclist rides up a mountain along the path shown in Figure 7.2.16 in
the text. She makes one complete revolution around the mountain in reaching the top, while
her vertical rate of climb is constant. Throughout the trip, she exerts a force described by
the vector field

F(x, y, z) = yi + xj + k.

What is the work done by the cyclist in travelling from A to B? What is unrealistic about
this model of a cyclist?

Solution. Notice that F = ∇f , where

f(x, y, z) = xy + z.

Also, A = (
√

2π, 0, 0) and B = (0, 0, 2π). Thus the work is

f(B)− f(A) = 2π.

The last question is of course subject to interpretation—it does challenge the students
to think about modeling. One possible answer is this. The path followed is

c(t) =
(√

(2π − t) cos t,
√

(2π − t) sin t, t
)

for 0 ≤ t ≤ 2π. Near t = 2π, the speed ‖c′(t)‖ approaches infinity. This is clearly not
possible for a real bicycle rider. ♦
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Exercise 7.3.2 Find an equation for the tangent plane to the surface x = u2 − v2, y =
u+ v, z = u2 + 4v at

(
−1

4 ,
1
2 , 2
)
.

Solution. For this surface,

Tu = (2u)i + j + (2u)k
Tv = (−2v)i + j + 4k.

To calculate these vectors explicitly at
(
−1

4 ,
1
2 , 2
)

we must find the point(s) in the uv plane
corresponding to the point

(
−1

4 ,
1
2 , 2
)

on the surface. To find (u, v) we must solve

u2 − v2 = −1
4

u+ v =
1
2

u2 + 4v = 2.

Subtracting the first equation from the last we obtain

v2 + 4v =
9
4

i.e.,
4v2 + 16v − 9 = 0.

By the quadratic formula the two possible solutions for v are:

−16±
√

16 · 16 + 16 · 9
8

=
−16± 20

8

=
1
2

or − 4
1
2
.

The solution for u corresponding to v = 1
2 is u = 0. One readily checks that the image of

the point
(
0, 1

2

)
is, in fact the point

(
−1

4 ,
1
2 , 2
)

on the surface. The other possible value of v
does not yield a value of u that solves all three equations. A normal to the surface is given
by

Tu ×Tv =

∣∣∣∣∣∣
i j k

2u 1 2u
−2v 1 4

∣∣∣∣∣∣
= (4− 2u)i + (−8u− 4uv)j + (2u+ 2v)k.

At
(
0, 1

2

)
= (u, v),

Tu ×Tv = 4i + k = n.

Since the equation of a tangent plane at the point (x0, y0, z0), where the normal vector n to
the surface is known, is given by

n · (x− x0, y − y0, z − z0) = 0

the equation of the desired tangent plane is

4
(
x+

1
4

)
+ (z − 2) = 0
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i.e.,
4x+ z − 1 = 0. ♦

Exercise 7.3.6 Find an expression for a unit vector normal to the surface

x = 3 cos θ sinφ, y = 2 sin θ sinφ, z = cosφ

for θ in [0, 2π] and φ in [0, π].

Solution. Here,
Tθ = (−3 sin θ sinφ, 2 cos θ sinφ, 0)

and
Tφ = (3 cos θ cosφ, 2 sin θ cosφ,− sinφ).

Thus,
Tθ ×Tφ = (−2 cos θ sin2 φ,−3 sin θ sin2 φ,−6 sinφ cosφ)

and
‖Tθ ×Tφ‖ = sinφ(5 sin2 θ sin2 φ+ 32 cos2 φ+ 4)1/2.

Hence a unit normal vector is

n =
Tθ ×Tφ

‖Tθ ×Tφ‖
=

1

sinφ
√

5 sin2 θ sin2 φ+ 32 cos2 φ+ 4
×(−2 cos θ sin2 φ,−3 sin θ sin2 φ,−6 sinφ cosφ).

Since
x2

9
+
y2

4
+ z2 = 1,

the surface is an ellipsoid. ♦

6


