## Ma 1c Practical - Solutions to Homework Set 5

All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition)

1. Exercise 4.1.14: Show that, at a local maximum or minimum of the quantity $\|\mathbf{r}(t)\|$, $\mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{r}(t)$.

Solution: Notice that at the time $t$ where a local maximum or minimum for $\|\mathbf{r}(t)\|$ occurs, a local maximum or minimum for $\|\mathbf{r}(t)\|^{2}=\mathbf{r}(t) \cdot \mathbf{r}(t)$ also occurs. And at those particular $t$ 's, the first derivative of $\|\mathbf{r}(t)\|^{2}$ is equal to zero. Therefore

$$
0=(\mathbf{r}(t) \cdot \mathbf{r}(t))^{\prime}=\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)
$$

which means that $\mathbf{r}^{\prime}(t)$ is perpendicular to $\mathbf{r}(t)$. $\diamond$
2. Exercise 4.2.4: Find the arc length of the curve

$$
c(t)=\left(t+1, \frac{2 \sqrt{2}}{3} t^{3 / 2}+7, \frac{1}{2} t^{2}\right)
$$

on the interval $1 \leq t \leq 2$.

Solution: The arc length is

$$
L(c)=\int_{1}^{2}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{1}^{2} \sqrt{1+2 t+t^{2}} d t=\int_{1}^{2}(t+1) d t=\frac{5}{2}
$$

3. Exercise 4.2.18: In special relativity, the proper time of a path $\gamma:[a, b] \rightarrow \mathbb{R}^{4}$ with $\gamma(\lambda)=(x(\lambda), y(\lambda), z(\lambda), t(\lambda))$ is defined to be the quantity

$$
\frac{1}{c} \int_{a}^{b} \sqrt{-\left[x^{\prime}(\lambda)\right]^{2}-\left[y^{\prime}(\lambda)\right]^{2}-\left[z^{\prime}(\lambda)\right]^{2}+c^{2}\left[t^{\prime}(\lambda)\right]^{2}} d \lambda,
$$

where $c$ is the velocity of light, a constant. Referring to Figure 1, show that, using self-explanatory notation,

$$
\text { proper time }(\mathrm{AB})+\text { proper time }(\mathrm{BC})<\text { proper time }(\mathrm{AC}) .
$$

(This inequality is a special case of what is known as the twin paradox.)


Figure 1: The relativistic triangle inequality.

Solution: We proceed in three steps. First we parametrize the paths.
i Let $\mathrm{A}=(0,0,0,0), \mathrm{B}=\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right), \mathrm{C}=\left(0,0,0, t_{\mathrm{C}}\right)$. Let $c_{1}, c_{2}, c_{3}$ be the paths from A to $\mathrm{B}, \mathrm{B}$ to $\mathrm{C}, \mathrm{A}$ to C , respectively. Then

$$
\begin{aligned}
c_{1}(\lambda) & =(1-\lambda)(0,0,0,0)+\lambda\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right) \\
c_{2}(\lambda) & =(1-\lambda)\left(x_{\mathrm{B}}, 0,0, t_{\mathrm{B}}\right)+\lambda\left(0,0,0, t_{\mathrm{C}}\right) \\
c_{3}(\lambda) & =(1-\lambda)(0,0,0,0)+\lambda\left(0,0,0, t_{\mathrm{C}}\right)
\end{aligned}
$$

ii Denote the proper time of $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$ by $T_{\mathrm{AB}}$, etc., then

$$
T_{\mathrm{AB}}=\frac{1}{c} \int_{0}^{1} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}} d \lambda=\frac{1}{c} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}} .
$$

Similarly, we have

$$
\begin{aligned}
T_{\mathrm{BC}} & =\frac{1}{c} \sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}} \\
T_{\mathrm{AC}} & =\frac{1}{c} \sqrt{c^{2} t_{\mathrm{C}}^{2}}=\frac{1}{c}\left(c t_{\mathrm{C}}\right)
\end{aligned}
$$

iii It suffices to show that

$$
\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}+\sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}}<c t_{\mathrm{C}} .
$$

But the above is true if and only if

$$
\sqrt{-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}}<c t_{\mathrm{C}}-\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}
$$

if and only if

$$
-x_{\mathrm{B}}^{2}+c^{2}\left(t_{\mathrm{C}}-t_{\mathrm{B}}\right)^{2}<c^{2} t_{\mathrm{C}}^{2}-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}-2 c t_{\mathrm{C}} \sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}
$$

if and only if

$$
c t_{\mathrm{B}}>\sqrt{-x_{\mathrm{B}}^{2}+c^{2} t_{\mathrm{B}}^{2}}
$$

The last inequality is true as $x_{B}^{2}>0$. Thus the proof is complete. $\diamond$
4. Exercise 4.3.14: Show that the curve

$$
\mathbf{c}(t)=\left(t^{2}, 2 t-1, \sqrt{t}\right), t>0
$$

is a flow line of the velocity vector field

$$
\mathbf{F}(x, y, z)=(y+1,2,1 / 2 z)
$$

Solution: We must verify that $\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))$. The left side is $(2 t, 2,1 /(2 \sqrt{t}))$ while the right side is $\mathbf{F}\left(t^{2}, 2 t-1, \sqrt{t}\right)=(2 t, 2,1 /(2 \sqrt{t}))$. Thus $c(t)$ is a flow line of $\mathbf{F}$. $\diamond$
5. Exercise 4.4.16: Find the curl of the vector field

$$
\mathbf{F}(x, y, z)=\frac{y z \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}}{x^{2}+y^{2}+z^{2}}
$$

Solution: Let $r=\sqrt{x^{2}+y^{2}+z^{2}}$. We take the formal cross product of the $\nabla$ operator with the given vector field to calculate the curl:

$$
\begin{aligned}
\nabla \times \mathbf{F}= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{y z}{r^{2}} & \frac{-x z}{r^{2}} & \frac{x y}{r^{2}}
\end{array}\right| \\
= & {\left[\frac{\partial}{\partial y}\left(\frac{x y}{r^{2}}\right)+\frac{\partial}{\partial z}\left(\frac{x z}{r^{2}}\right)\right] \mathbf{i}-\left[\frac{\partial}{\partial x}\left(\frac{x y}{r^{2}}\right)-\frac{\partial}{\partial z}\left(\frac{y z}{r^{2}}\right)\right] \mathbf{j} } \\
& +\left[\frac{\partial}{\partial x}\left(\frac{-x z}{r^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{y z}{r^{2}}\right)\right] \mathbf{k} \\
= & {\left[\frac{x r^{2}-2 x y^{2}}{\left.r^{4}+\frac{x r^{2}-2 x z^{2}}{r^{4}}\right] \mathbf{i}-\left[\frac{y r^{2}-2 y x^{2}}{r^{4}}-\frac{y r^{2}-2 y z^{2}}{r^{4}}\right] \mathbf{j}}\right.} \\
& -\left[\frac{z r^{2}-2 z x^{2}}{r^{4}}+\frac{z r^{2}-2 z y^{2}}{r^{4}}\right] \mathbf{k} \\
= & \frac{2}{r^{4}}\left(x^{3} \mathbf{i}+y\left(x^{2}-z^{2}\right) \mathbf{j}-z^{3} \mathbf{k}\right) .
\end{aligned}
$$

Therefore,

$$
\nabla \times \mathbf{F}=\left(\frac{2 x^{3}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{2 y\left(x^{2}-z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}, \frac{-2 z^{3}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)
$$

6. Exercise 4.4.26: Show that $\mathbf{F}=\left(x^{2}+y^{2}\right) \mathbf{i}-2 x y \mathbf{j}$ is not a gradient field.

Solution: Method 1 - Suppose $\mathbf{F}$ is a gradient field of some $C^{2}$ function $U$, i.e., $\mathbf{F}=\nabla U$. This means

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=x^{2}+y^{2} \\
& \frac{\partial U}{\partial y}=-2 x y
\end{aligned}
$$

But then we would have

$$
\frac{\partial^{2} U}{\partial y \partial x}=2 y \neq-2 y=\frac{\partial^{2} U}{\partial x \partial y} .
$$

This contradiction proves that $\mathbf{F}$ is not a gradient field.
Method 2 - If $\mathbf{F}$ were a gradient field we would have $\nabla \times \mathbf{F}=\mathbf{0}$. However,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y^{2} & -2 x y & 0
\end{array}\right|=(-2 y-2 y) \mathbf{k}=-4 y \mathbf{k} \neq 0 .
$$

Hence $\mathbf{F}$ is not a gradient. $\diamond$
7. Exercise 5.1.4: Using Cavalieri's principle, compute the volume of the structure shown in Figure 5.1.11 of the textbook; each section is a rectangle of length 5 and width 3 .

Solution: By Cavalieri's principle the volume of the solid in Figure 5.1.11 is the same as that of a rectangular parallelepiped of dimensions $3 \times 5 \times 7$ or $(3)(5)(7)=105$. $\diamond$
8. Exercise 5.2.6: Compute the volume of the solid bounded by the surface $z=\sin y$, the planes $x=1, x=0, y=0$ and $y=\pi / 2$ and the $x y$ plane.

Solution: Since $\sin y \geq 0$, for $0 \leq y \leq \pi / 2$, this volume is given by

$$
\int_{0}^{1} \int_{0}^{\pi / 2} \sin y d y d x=\int_{0}^{1}[-\cos y]_{0}^{\pi / 2} d x=\int_{0}^{1} d x=1
$$

9. Exercise 5.3.2(a): Evaluate the following integral and sketch the region of integration

$$
\int_{-3}^{2} \int_{0}^{y^{2}}\left(x^{2}+y\right) d x d y
$$

Solution: The region of integration is shown in Figure 2.


Figure 2: An $x$-simple region of integration.
This region is $x$-simple but not $y$-simple, since it is bounded on the left and right by graphs, but not top and bottom (unless we broke it into two pieces, one above the $x$-axis and one below. The integral is

$$
\begin{aligned}
\int_{-3}^{2}\left(\frac{x^{3}}{3}+\left.x y\right|_{x=0} ^{x=y^{2}}\right) d y & =\int_{-3}^{2}\left(\frac{y^{6}}{3}+y^{3}\right) d y=\frac{y^{7}}{21}+\left.\frac{y^{4}}{4}\right|_{-3} ^{2} \\
& =\frac{2^{7}}{21}+\frac{3^{7}}{21}+\frac{2^{4}}{4}-\frac{3^{4}}{4}=\frac{2^{7}+3^{7}}{21}-\frac{65}{4}
\end{aligned}
$$

10. Exercise 5.4.2(a): Find

$$
\int_{-1}^{1} \int_{|y|}^{1}(x+y)^{2} d x d y
$$

Solution: Changing the order of integration (see Figure 3) we see that this iterated integral is equal to

$$
\begin{aligned}
\int_{0}^{1} \int_{-x}^{x}(x+y)^{2} d y d x & =\frac{1}{3} \int_{0}^{1}\left[(x+y)^{3}\right]_{-x}^{x} d x \\
& =\frac{8}{3} \int_{0}^{1} x^{3} d x=\frac{2}{3} . \diamond
\end{aligned}
$$



Figure 3: Region of integration for Exercise 5.4.2(a).

