Ma 1c Practical - Solutions to Homework Set 5

All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition)

1. Exercise 4.1.14: Show that, at a local mazimum or minimum of the quantity |r(t)||,
r'(t) is perpendicular to r(t).

Solution: Notice that at the time ¢ where a local maximum or minimum for ||r(¢)||
occurs, a local maximum or minimum for ||r(¢)||*> = r(¢) - r(¢) also occurs. And at
those particular ¢’s, the first derivative of ||r(t)||? is equal to zero. Therefore

which means that r/(¢) is perpendicular to r(t). ¢

2. Exercise 4.2.4: Find the arc length of the curve
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on the interval 1 <t < 2.
Solution: The arc length is
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3. Exercise 4.2.18: In special relativity, the proper time of a path v : [a,b] — R* with
YA) = (2(N),y(A), 2(N), t(N)) is defined to be the quantity
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where c is the velocity of light, a constant. Referring to Figure 1, show that, using
self-explanatory notation,

proper time (AB) + proper time (BC) < proper time (AC).

(This inequality is a special case of what is known as the twin paradoz.)



Figure 1: The relativistic triangle inequality.

Solution: We proceed in three steps. First we parametrize the paths.

i Let A =(0,0,0,0),B = (xB,0,0,t5),C = (0,0,0,tc). Let c1,ca,c3 be the paths
from A to B, B to C, A to C, respectively. Then

01(/\) = (1 — )\)(0,0,0,0) +/\(1‘B,0,0,t]3)
CQ(A) = (1 - A)(£B70707tB) +)\(07070atC)
63()‘) = (1 - )‘)(0707010) +)‘(070101tC)

ii Denote the proper time of AB, BC, AC by T, etc., then
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Similarly, we have
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iii It suffices to show that

V= + Pt [—ah + e — tn)? < cte.

But the above is true if and only if

\/—x% + A(tc —t)? < ctc — \/—xQB + 02t2B

if and only if

—xh + P (tc —tp)? < PtE — o + Pth — 2ctoy/ —rh + 2t}



if and only if

ctg > \/—xh + A},

The last inequality is true as $2B > 0. Thus the proof is complete.

. Exercise 4.3.14: Show that the curve
c(t) = (12,2t — 1,V/1),t > 0
1s a flow line of the velocity vector field

F(z,y,2) = (y+1,2,1/22).

Solution: We must verify that ¢/(t) = F(c(t)). The left side is (2¢,2,1/(2+/t)) while
the right side is F(¢2,2t — 1,/t) = (2t,2,1/(2v/t)). Thus c(t) is a flow line of F. ¢
. Exercise 4.4.16: Find the curl of the vector field

yzi — xzj + zyk
F(x,y,z) = 72 +y2 122

Solution: Let r = /22 + y2 + 22. We take the formal cross product of the V
operator with the given vector field to calculate the curl:
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6. Exercise 4.4.26: Show that F = (2 + y?)i — 2xyj is not a gradient field.

Solution: Method 1 - Suppose F is a gradient field of some C? function U, i.e.,
F = VU. This means
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This contradiction proves that F is not a gradient field.

Method 2 - If F were a gradient field we would have V x F = 0. However,
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Hence F is not a gradient. ¢

7. Exercise 5.1.4: Using Cavalieri’s principle, compute the volume of the structure
shown in Figure 5.1.11 of the textbook; each section is a rectangle of length 5 and
width 3.

Solution: By Cavalieri’s principle the volume of the solid in Figure 5.1.11 is the
same as that of a rectangular parallelepiped of dimensions 3 x5 x 7 or (3)(5)(7) = 105.
¢

8. Exercise 5.2.6: Compute the volume of the solid bounded by the surface z = siny,
the planes x = 1,2 =0,y = 0 and y = 7/2 and the xy plane.

Solution: Since siny > 0, for 0 <y < 7/2, this volume is given by
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9. Exercise 5.3.2(a): Fvaluate the following integral and sketch the region of integration
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Solution: The region of integration is shown in Figure 2.

Figure 2: An z-simple region of integration.

This region is z-simple but not y-simple, since it is bounded on the left and right by
graphs, but not top and bottom (unless we broke it into two pieces, one above the
z-axis and one below. The integral is

2 3 z=y? 2 /.6 7 412
x y 3 yooy
z dy = Zz dy = 2 + L
27 37 2t 3t 27437 65

TR TR 21 Y




10. Exercise 5.4.2(a): Find
1,1
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Solution: Changing the order of integration (see Figure 3) we see that this iterated
integral is equal to

/01/_i($+y)2dydm _ %/01 (2 +)*)", da

Figure 3: Region of integration for Exercise 5.4.2(a).



