
Ma 1c Practical - Solutions to Homework Set 5

All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition)

1. Exercise 4.1.14: Show that, at a local maximum or minimum of the quantity ‖r(t)‖,
r′(t) is perpendicular to r(t).

Solution: Notice that at the time t where a local maximum or minimum for ‖r(t)‖
occurs, a local maximum or minimum for ‖r(t)‖2 = r(t) · r(t) also occurs. And at
those particular t’s, the first derivative of ‖r(t)‖2 is equal to zero. Therefore

0 = (r(t) · r(t))′ = r′(t) · r(t) + r(t) · r′(t) = 2r′(t) · r(t),

which means that r′(t) is perpendicular to r(t). ♦

2. Exercise 4.2.4: Find the arc length of the curve

c(t) =

(
t+ 1,

2
√

2
3
t3/2 + 7,

1
2
t2

)

on the interval 1 ≤ t ≤ 2.

Solution: The arc length is

L(c) =
∫ 2

1
‖c′(t)‖dt =

∫ 2

1

√
1 + 2t+ t2dt =

∫ 2

1
(t+ 1)dt =

5
2
. ♦

3. Exercise 4.2.18: In special relativity, the proper time of a path γ : [a, b] → R4 with
γ(λ) = (x(λ), y(λ), z(λ), t(λ)) is defined to be the quantity

1
c

∫ b

a

√
−[x′(λ)]2 − [y′(λ)]2 − [z′(λ)]2 + c2[t′(λ)]2dλ,

where c is the velocity of light, a constant. Referring to Figure 1, show that, using
self-explanatory notation,

proper time (AB) + proper time (BC) < proper time (AC).

(This inequality is a special case of what is known as the twin paradox.)
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Figure 1: The relativistic triangle inequality.

Solution: We proceed in three steps. First we parametrize the paths.

i Let A = (0, 0, 0, 0),B = (xB, 0, 0, tB),C = (0, 0, 0, tC). Let c1, c2, c3 be the paths
from A to B, B to C, A to C, respectively. Then

c1(λ) = (1− λ)(0, 0, 0, 0) + λ(xB, 0, 0, tB)
c2(λ) = (1− λ)(xB, 0, 0, tB) + λ(0, 0, 0, tC)
c3(λ) = (1− λ)(0, 0, 0, 0) + λ(0, 0, 0, tC)

ii Denote the proper time of AB, BC, AC by TAB, etc., then

TAB =
1
c

∫ 1

0

√
−x2

B + c2t2B dλ =
1
c

√
−x2

B + c2t2B.

Similarly, we have

TBC =
1
c

√
−x2

B + c2(tC − tB)2

TAC =
1
c

√
c2t2C =

1
c

(ctC).

iii It suffices to show that√
−x2

B + c2t2B +
√
−x2

B + c2(tC − tB)2 < ctC.

But the above is true if and only if√
−x2

B + c2(tC − tB)2 < ctC −
√
−x2

B + c2t2B

if and only if

−x2
B + c2(tC − tB)2 < c2t2C − x2

B + c2t2B − 2ctC
√
−x2

B + c2t2B
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if and only if

ctB >
√
−x2

B + c2t2B.

The last inequality is true as x2
B > 0. Thus the proof is complete. ♦

4. Exercise 4.3.14: Show that the curve

c(t) = (t2, 2t− 1,
√
t), t > 0

is a flow line of the velocity vector field

F(x, y, z) = (y + 1, 2, 1/2z).

Solution: We must verify that c′(t) = F(c(t)). The left side is (2t, 2, 1/(2
√
t)) while

the right side is F(t2, 2t− 1,
√
t) = (2t, 2, 1/(2

√
t)). Thus c(t) is a flow line of F. ♦

5. Exercise 4.4.16: Find the curl of the vector field

F(x, y, z) =
yzi− xzj + xyk
x2 + y2 + z2

.

Solution: Let r =
√
x2 + y2 + z2. We take the formal cross product of the ∇

operator with the given vector field to calculate the curl:

∇× F =

∣∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z
yz

r2
−xz
r2

xy

r2

∣∣∣∣∣∣∣∣∣∣∣
=
[
∂

∂y

(xy
r2

)
+

∂

∂z

(xz
r2

)]
i−
[
∂

∂x

(xy
r2

)
− ∂

∂z

(yz
r2

)]
j

+
[
∂

∂x

(
−xz
r2

)
− ∂

∂y

(yz
r2

)]
k

=
[
xr2 − 2xy2

r4
+
xr2 − 2xz2

r4

]
i−
[
yr2 − 2yx2

r4
− yr2 − 2yz2

r4

]
j

−
[
zr2 − 2zx2

r4
+
zr2 − 2zy2

r4

]
k

=
2
r4
(
x3i + y(x2 − z2)j− z3k

)
.

Therefore,

∇× F =
(

2x3

(x2 + y2 + z2)2
,

2y(x2 − z2)
(x2 + y2 + z2)2

,
−2z3

(x2 + y2 + z2)2

)
. ♦
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6. Exercise 4.4.26: Show that F = (x2 + y2)i− 2xyj is not a gradient field.

Solution: Method 1 - Suppose F is a gradient field of some C2 function U , i.e.,
F = ∇U . This means

∂U

∂x
= x2 + y2

∂U

∂y
= −2xy.

But then we would have

∂2U

∂y∂x
= 2y 6= −2y =

∂2U

∂x∂y
.

This contradiction proves that F is not a gradient field.

Method 2 - If F were a gradient field we would have ∇× F = 0. However,

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2 + y2 −2xy 0

∣∣∣∣∣∣ = (−2y − 2y)k = −4yk 6= 0.

Hence F is not a gradient. ♦

7. Exercise 5.1.4: Using Cavalieri’s principle, compute the volume of the structure
shown in Figure 5.1.11 of the textbook; each section is a rectangle of length 5 and
width 3.

Solution: By Cavalieri’s principle the volume of the solid in Figure 5.1.11 is the
same as that of a rectangular parallelepiped of dimensions 3×5×7 or (3)(5)(7) = 105.
♦

8. Exercise 5.2.6: Compute the volume of the solid bounded by the surface z = sin y,
the planes x = 1, x = 0, y = 0 and y = π/2 and the xy plane.

Solution: Since sin y ≥ 0, for 0 ≤ y ≤ π/2, this volume is given by∫ 1

0

∫ π/2

0
sin ydy dx =

∫ 1

0
[− cos y]π/20 dx =

∫ 1

0
dx = 1. ♦
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9. Exercise 5.3.2(a): Evaluate the following integral and sketch the region of integration∫ 2

−3

∫ y2

0
(x2 + y)dx dy.

Solution: The region of integration is shown in Figure 2.

y = 2

x = 4
x

y

x = y2

y = – 3

Figure 2: An x-simple region of integration.

This region is x-simple but not y-simple, since it is bounded on the left and right by
graphs, but not top and bottom (unless we broke it into two pieces, one above the
x-axis and one below. The integral is

∫ 2

−3

(
x3

3
+ xy

∣∣∣∣x=y2
x=0

)
dy =

∫ 2

−3

(
y6

3
+ y3

)
dy =

y7

21
+
y4

4

∣∣∣∣2
−3

=
27

21
+

37

21
+

24

4
− 34

4
=

27 + 37

21
− 65

4
. ♦
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10. Exercise 5.4.2(a): Find ∫ 1

−1

∫ 1

|y|
(x+ y)2dx dy.

Solution: Changing the order of integration (see Figure 3) we see that this iterated
integral is equal to∫ 1

0

∫ x

−x
(x+ y)2dy dx =

1
3

∫ 1

0

[
(x+ y)3

]x
−x dx

=
8
3

∫ 1

0
x3dx =

2
3
. ♦

y

x



-

Figure 3: Region of integration for Exercise 5.4.2(a).

6


