HOMEWORK 4 SOLUTIONS

All questions are from Vector Calculus, by Marsden and Tromba

Question 1: 3.1.16 Let w = f(x, y) be a function of two variables, and let

$$x = u + v, y = u - v.$$

Show that

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}.$$

Solution. By the chain rule,

$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial v} = w_x - w_y.$$

Thus,

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial}{\partial u} \left(\frac{\partial w}{\partial v} \right) = \frac{\partial}{\partial u} \left(w_x - w_y \right) = \frac{\partial}{\partial u} w_x - \frac{\partial}{\partial u} w_y$$
$$= \frac{\partial w_x}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial w_x}{\partial y} \cdot \frac{\partial y}{\partial u} - \left(\frac{\partial w_y}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial w_y}{\partial y} \cdot \frac{\partial y}{\partial u} \right)$$
$$= w_{xx} + w_{xy} - (w_{yx} + w_{yy}) = w_{xx} - w_{yy}$$

i.e.,

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}$$

Question 2: 3.1.22

(a) : Show that the function

$$g(x,t) = 2 + e^{-t} \sin x$$

satisfies the heat equation: $g_t = g_{xx}$. [Here g(x,t) represents the temperature in a metal rod at position x and time t.]

- (b): Sketch the graph of g for $t \ge 0$. (Hint: Look at sections by the planes t = 0, t = 1, and t = 2.)
- (c): What happens to g(x,t) as $t \to \infty$? Interpret this limit in terms of the behavior of heat in the rod.

Solution.

- (a) : Since $g(x, y) = 2 + e^{-t} \sin x$, then $g_t = -e^{-t} \sin x$, $g_x = e^{-t} \cos x$, and $g_{xx} = -e^{-t} \sin x$. Therefore, $g_t = g_{xx}$.
- (b) : The graph of g is shown in Figure 1.

Date: Math 1c Practical, 2008.

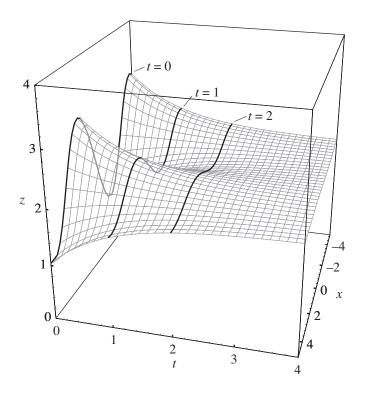


FIGURE 1. The graph of g at t = 0, 1, and 2.

(c) : Note that

$$\lim_{t \to \infty} g(x, t) = \lim_{t \to \infty} (2 + e^{-t} \sin x) = 2$$

This means that the temperature in the rod at position x tends to be a constant (= 2) as the time t is large enough. \diamond

Question 3: 3.2.2 Determine the second-order Taylor formula for

$$f(x,y) = \frac{1}{x^2 + y^2 + 1}$$
 about $x_0 = 0, y_0 = 0.$

Solution. We first compute the partial derivatives up through second order:

$$f_x = \frac{-2x}{(1+x^2+y^2)^2}, \quad f_y = \frac{-2y}{(1+x^2+y^2)^2}$$

$$f_{xy} = \frac{8xy}{(1+x^2+y^2)^3}, \quad f_{yx} = \frac{8xy}{(1+x^2+y^2)^3}$$

$$f_{xx} = \frac{-2}{(1+x^2+y^2)^2} + \frac{8x^2}{(1+x^2+y^2)^3}$$

$$f_{yy} = \frac{-2}{(1+x^2+y^2)^2} + \frac{8y^2}{(1+x^2+y^2)^3}.$$

Next, we evaluate these derivatives at (0,0), obtaining

$$f_x(0,0) = f_y(0,0) = 0,$$

$$f_{xy}(0,0) = f_{yx}(0,0) = 0$$

and

$$f_{xx}(0,0) = f_{yy}(0,0) = -2.$$

Therefore, the second order Taylor formula is

$$f(\mathbf{h}) = -h_1^2 - h_2^2 + R_2(\mathbf{0}, \mathbf{h}),$$

where $\mathbf{h} = (h_1, h_2)$ and where

$$\frac{R_2(\mathbf{0}, \mathbf{h})}{\|\mathbf{h}\|} \to 0 \quad \text{as} \quad \|\mathbf{h}\| \to 0.$$

Question 4: 3.2.6 Determine the second-order Taylor formula for the function

$$f(x,y) = e^{(x-1)^2} \cos y$$

expanded about the point $x_0 = 1, y_0 = 0$.

Solution. The ingredients needed in the second-order Taylor formula are computed as follows:

$$f_x = 2(x-1)e^{(x-1)^2}\cos y$$

$$f_y = -e^{(x-1)^2}\sin y$$

$$f_{xx} = 2e^{(x-1)^2}\cos y + 4(x-1)^2e^{(x-1)^2}\cos y$$

$$f_{xy} = -2(x-1)e^{(x-1)^2}\sin y = f_{yx}$$

$$f_{yy} = -e^{(x-1)^2}\cos y.$$

Evaluating the function and these derivatives at the point (1,0) gives

$$f(1,0) = 1$$

$$f_x(1,0) = f_y(1,0) = 0$$

$$f_{xx}(1,0) = 2$$

$$f_{xy}(1,0) = f_{yx}(1,0) = 0 \text{ and }$$

$$f_{yy}(1,0) = -1.$$

Consequently, the second order Taylor formula is

$$f(\mathbf{h}) = 1 + h_1^2 - \frac{1}{2}h_2^2 + R_2((1,0),\mathbf{h}),$$

where $\mathbf{h} = (h_1, h_2)$ and where

$$\frac{R_2((1,0),\mathbf{h})}{\|\mathbf{h}\|} \to 0 \quad \text{as} \quad \|\mathbf{h}\| \to 0.$$

Question 5: 3.3.7 Find the critical points for the function

$$f(x,y) = 3x^2 + 2xy + 2x + y^2 + y + 4.$$

and then determine whether they are local maxima, local minima, or saddle points.

Solution. Here,

$$\frac{\partial f}{\partial x} = 6x + 2y + 2, \quad \frac{\partial f}{\partial y} = 2x + 2y + 1.$$

We have

$$\frac{\partial f}{\partial x} = 0, \quad \frac{\partial f}{\partial y} = 0$$

when x = y = -1/4. Therefore, the only critical point is (-1/4, -1/4). Now, $\frac{\partial^2 f}{\partial x^2}(-1/4, -1/4) = 6$, $\frac{\partial^2 f}{\partial y^2}(-1/4, -1/4) = 2$, and $\frac{\partial^2 f}{\partial x \partial y}(-1/4, -1/4) = 2$, which yields D = 6.2 - 2 = 10 > 0. Therefore (-1/4, -1/4) is a local minimum.

Question 6: 3.3.17 Find the local maxima and minima for $z = (x^2+3y^2)e^{1-x^2-y^2}$. Solution. We first locate the critical points of $f(x, y) = (x^2+3y^2)e^{1-x^2-y^2}$. $\nabla f(x, y) = e^{1-x^2-y^2}(2x(1-3y^2-x^2)\mathbf{i}+2y(3-x^2-3y^2)\mathbf{j})$ Thus, $\nabla f(x, y) = 0$ if and only if $(x, y) = (0, 0), (0, \pm 1),$ or $(\pm 1, 0)$. To determine whether they are maxima or minima, we need to calculate the second partial derivatives. $\frac{\partial^2 f}{\partial x^2} = (1+2x^4-3y^2+x^2(6y^2-5))e^{1-x^2-y^2}$ $\frac{\partial^2 f}{\partial y^2} = (3-15y^2+6y^4+x^2(2y^2-1))e^{1-x^2-y^2},$ and $\frac{\partial^2 f}{\partial x^2 y} = 4(3y^2+x^2-4)e^{1-x^2-y^2}.$ Therefore, $\frac{\partial^2 f}{\partial x^2}(0,0) = 2e, \frac{\partial^2 f}{\partial y^2}(0,0) = 6e,$ and $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0$, which yields $D = (2e)(6e) = 12e^2 > 0$, and (0,0) is a local minimum. $\frac{\partial^2 f}{\partial x^2}(0,\pm 1) = -4, \frac{\partial^2 f}{\partial y^2}(0,\pm 1) = -12,$ and $\frac{\partial^2 f}{\partial x \partial y}(0,\pm 1) = 0$, which yields D = (-4)(-12) = 24 > 0, and $(0,\pm 1)$ are local maxima. $\frac{\partial^2 f}{\partial x^2}(\pm 1,0) = -4, \frac{\partial^2 f}{\partial y^2}(\pm 1,0) = 4,$ and $\frac{\partial^2 f}{\partial x \partial y}(0,\pm 1) = 0,$ which yields D = (-4)(-12) = 24 > 0, and $(0,\pm 1)$ are local maxima.

Question 7: 3.3.25 Write the number 120 as a sum of three numbers so that the sum of the products taken two at a time is a maximum.

Solution. Let the three numbers be x, y, z. Thus,

$$x + y + z = 120, \quad z = 120 - x - y$$

We want to find the maximum value for

$$S(x,y) = xy + yz + xz = xy + (x+y)(120 - x - y)$$

= $-x^2 - xy - y^2 + 120x + 120y.$

We differentiate to get

$$\frac{\partial S}{\partial x} = -2x - y + 120, \quad \frac{\partial S}{\partial y} = -x - 2y + 120.$$

These vanish when x = y = 40, then z = 120 - (x + y) = 40. Therefore, when x = y = z = 40 is the only critical point. The condition $0 \le x \le 120, 0 \le y \le 120, 0 \le z \le 120$ describes a cube in \mathbb{R}^3 and on the boundary of the cube (either x = 0, x = 120, y = 0, y = 120, z = 0, z = 120), S is zero. Therefore the maximum of S occurs on the interior of this cube, *i.e.*, at a local maximum. Since x = 40, y = 40, z = 40 is the only critical point, it must be a maximum.

4

Question 8: 3.4.2 Find the extrema of f(x, y) = x - y subject to the constraint $x^2 - y^2 = 2$.

Solution. By the method of Lagrange multipliers, we write the constraint as g = 0, where $g(x, y) = x^2 - y^2 - 2$ and then write the Lagrange multiplier equations as $\nabla f = \lambda \nabla g$. Thus, we get

$$1 = \lambda \cdot 2x$$

$$1 = \lambda \cdot 2y$$

$$x^2 - y^2 - 2 = 0.$$

First of all, the first two equations imply that $x \neq 0$ and $y \neq 0$. Hence we can eliminate λ , giving x = y. From the last equation this would imply that 2 = 0. Hence there are no extrema.

Question 9: 3.4.22 Let P be a point on a surface S in \mathbb{R}^3 defined by the equation f(x, y, z) = 1, where f is of class C^1 . Suppose that P is a point where the distance from the origin to S is maximized. Show that the vector emanating from the origin and ending at P is perpendicular to S.

Solution. We want to maximize the function $g(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint f(x, y, z) = 1. Suppose this maximum occurs at $P = (x_0, y_0, z_0)$, then by the method of Lagrange multipliers we have the equations

$$2x_{0} = \lambda \{\nabla f(x_{0}, y_{0}, z_{0})\}_{1}$$

$$2y_{0} = \lambda \{\nabla f(x_{0}, y_{0}, z_{0})\}_{2}$$

$$2z_{0} = \lambda \{\nabla f(x_{0}, y_{0}, z_{0})\}_{3}$$

where $\{\nabla f(x_0, y_0, z_0)\}_i$ denotes the *i*th component of $\nabla f(x_0, y_0, z_0), 1 \le i \le 3$. If $\mathbf{v} = (x_0, y_0, z_0)$ is the vector from the origin ending at P, then these equations say that $\mathbf{v} = (\frac{\lambda}{2}) \cdot \nabla f(x_0, y_0, z_0)$. But $\nabla f(x_0, y_0, z_0)$ is perpendicular to S at P, and since \mathbf{v} is a scalar multiple of $\nabla f(x_0, y_0, z_0)$ it is also perpendicular to S at P.

Question 10: 3.4.28 A company's production function is Q(x, y) = xy. The cost of production is C(x, y) = 2x + 3y. If this company can spend C(x, y) = 10, what is the maximum quantity that can be produced?

Solution. We want to maximize Q subject to the constraint C(x, y) = 10. Since both $x, y \ge 0$, this imposes the condition that $0 \le x \le 5, 0 \le y \le 10/3$. Thus, we wish to maximize Q on the line segment $2x+3y = 10, x \ge 0, y \ge 0$. If the maximum occurs at an interior point (x_0, y_0) of this segment, then $\nabla Q(x_0, y_0) = \lambda \nabla C(x_0, y_0)$; that is,

$$y_0 = 2\lambda$$

$$x_0 = 3\lambda$$

$$2x_0 + 3y_0 = 10.$$

Thus $6\lambda + 6\lambda = 10$, $\lambda = 5/6$, $y_0 = 5/3$, $x_0 = 5/2$, $Q(x_0, y_0) = 25/6$. The value of Q at the endpoints of this segment are $Q(0, \frac{10}{3}) = 0 = Q(5, 0)$. Consequently the maximum occurs at (5/2, 5/3) and the maximum value of Q is 25/6.