
HOMEWORK 4 SOLUTIONS

All questions are from Vector Calculus, by Marsden and Tromba

Question 1: 3.1.16 Let w = f(x, y) be a function of two variables, and let

x = u+ v, y = u− v.

Show that
∂2w

∂u∂v
=
∂2w

∂x2
− ∂2w

∂y2
.

Solution. By the chain rule,

∂w

∂v
=
∂w

∂x
· ∂x
∂v

+
∂w

∂y
· ∂y
∂v

= wx − wy.

Thus,

∂2w

∂u∂v
=

∂

∂u

(
∂w

∂v

)
=

∂

∂u
(wx − wy) =

∂

∂u
wx −

∂

∂u
wy

=
∂wx
∂x
· ∂x
∂u

+
∂wx
∂y
· ∂y
∂u
−

(
∂wy
∂x
· ∂x
∂u

+
∂wy
∂y
· ∂y
∂u

)
= wxx + wxy − (wyx + wyy) = wxx − wyy

i.e.,
∂2w

∂u∂v
=
∂2w

∂x2
− ∂2w

∂y2
.

Question 2: 3.1.22

(a) : Show that the function

g(x, t) = 2 + e−t sinx

satisfies the heat equation: gt = gxx. [Here g(x, t) represents the tempera-
ture in a metal rod at position x and time t.]

(b) : Sketch the graph of g for t ≥ 0. (Hint: Look at sections by the planes
t = 0, t = 1, and t = 2.)

(c) : What happens to g(x, t) as t → ∞? Interpret this limit in terms of the
behavior of heat in the rod.

Solution.

(a) : Since g(x, y) = 2 + e−t sinx, then gt = −e−t sinx, gx = e−t cosx, and
gxx = −e−t sinx. Therefore, gt = gxx.

(b) : The graph of g is shown in Figure 1.
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Figure 1. The graph of g at t = 0, 1, and 2.

(c) : Note that

lim
t→∞

g(x, t) = lim
t→∞

(2 + e−t sinx) = 2

This means that the temperature in the rod at position x tends to be a
constant (= 2) as the time t is large enough. ♦

Question 3: 3.2.2 Determine the second-order Taylor formula for

f(x, y) =
1

x2 + y2 + 1
about x0 = 0, y0 = 0.

Solution. We first compute the partial derivatives up through second order:

fx =
−2x

(1 + x2 + y2)2
, fy =

−2y
(1 + x2 + y2)2

fxy =
8xy

(1 + x2 + y2)3
, fyx =

8xy
(1 + x2 + y2)3

fxx =
−2

(1 + x2 + y2)2
+

8x2

(1 + x2 + y2)3

fyy =
−2

(1 + x2 + y2)2
+

8y2

(1 + x2 + y2)3
.
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Next, we evaluate these derivatives at (0, 0), obtaining

fx(0, 0) = fy(0, 0) = 0,

fxy(0, 0) = fyx(0, 0) = 0

and
fxx(0, 0) = fyy(0, 0) = −2.

Therefore, the second order Taylor formula is

f(h) = −h2
1 − h2

2 +R2(0,h),

where h = (h1, h2) and where

R2(0,h)
‖h‖

→ 0 as ‖h‖ → 0.

Question 4: 3.2.6 Determine the second-order Taylor formula for the function

f(x, y) = e(x−1)2 cos y

expanded about the point x0 = 1, y0 = 0.

Solution. The ingredients needed in the second-order Taylor formula are computed
as follows:

fx = 2(x− 1)e(x−1)2 cos y

fy = −e(x−1)2 sin y

fxx = 2e(x−1)2 cos y + 4(x− 1)2e(x−1)2 cos y

fxy = −2(x− 1)e(x−1)2 sin y = fyx

fyy = −e(x−1)2 cos y.

Evaluating the function and these derivatives at the point (1, 0) gives

f(1, 0) = 1
fx(1, 0) = fy(1, 0) = 0
fxx(1, 0) = 2
fxy(1, 0) = fyx(1, 0) = 0 and
fyy(1, 0) = −1.

Consequently, the second order Taylor formula is

f(h) = 1 + h2
1 −

1
2
h2

2 +R2((1, 0),h),

where h = (h1, h2) and where

R2((1, 0),h)
‖h‖

→ 0 as ‖h‖ → 0.

Question 5: 3.3.7 Find the critical points for the function

f(x, y) = 3x2 + 2xy + 2x+ y2 + y + 4.

and then determine whether they are local maxima, local minima, or saddle points.
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Solution. Here,
∂f

∂x
= 6x+ 2y + 2,

∂f

∂y
= 2x+ 2y + 1.

We have
∂f

∂x
= 0,

∂f

∂y
= 0

when x = y = −1/4. Therefore, the only critical point is (−1/4,−1/4). Now,
∂2f
∂x2 (−1/4,−1/4) = 6, ∂2f

∂y2 (−1/4,−1/4) = 2, and ∂2f
∂x∂y (−1/4,−1/4) = 2, which

yields D = 6.2− 2 = 10 > 0. Therefore (−1/4,−1/4) is a local minimum.

Question 6: 3.3.17 Find the local maxima and minima for z = (x2+3y2)e1−x
2−y2

.

Solution. We first locate the critical points of f(x, y) = (x2 + 3y2)e1−x
2−y2

.
∇f(x, y) = e1−x

2−y2
(2x(1 − 3y2 − x2)i + 2y(3 − x2 − 3y2)j) Thus, ∇f(x, y) = 0

if and only if (x, y) = (0, 0), (0,±1), or (±1, 0). To determine whether they are
maxima or minima, we need to calculate the second partial derivatives.
∂2f
∂x2 = (1 + 2x4 − 3y2 + x2(6y2 − 5))e1−x

2−y2

∂2f
∂y2 = (3− 15y2 + 6y4 + x2(2y2 − 1))e1−x

2−y2
, and

∂2f
∂x∂y = 4(3y2 + x2 − 4)e1−x

2−y2
.

Therefore, ∂2f
∂x2 (0, 0) = 2e, ∂2f

∂y2 (0, 0) = 6e, and ∂2f
∂x∂y (0, 0) = 0, which yields D =

(2e)(6e) = 12e2 > 0, and (0, 0) is a local minimum.
∂2f
∂x2 (0,±1) = −4, ∂2f

∂y2 (0,±1) = −12, and ∂2f
∂x∂y (0,±1) = 0, which yields D =

(−4)(−12) = 24 > 0, and (0,±1) are local maxima.
∂2f
∂x2 (±1, 0) = −4, ∂

2f
∂y2 (±1, 0) = 4, and ∂2f

∂x∂y (0,±1) = 0, which yields D = (−4)(4) =
−16 < 0, and (±1, 0) are saddle points.

Question 7: 3.3.25 Write the number 120 as a sum of three numbers so that the
sum of the products taken two at a time is a maximum.

Solution. Let the three numbers be x, y, z. Thus,

x+ y + z = 120, z = 120− x− y.

We want to find the maximum value for

S(x, y) = xy + yz + xz = xy + (x+ y)(120− x− y)
= −x2 − xy − y2 + 120x+ 120y.

We differentiate to get

∂S

∂x
= −2x− y + 120,

∂S

∂y
= −x− 2y + 120.

These vanish when x = y = 40, then z = 120 − (x + y) = 40. Therefore, when
x = y = z = 40 is the only critical point. The condition 0 ≤ x ≤ 120, 0 ≤
y ≤ 120, 0 ≤ z ≤ 120 describes a cube in R3 and on the boundary of the cube
(either x = 0, x = 120, y = 0, y = 120, z = 0, z = 120), S is zero. Therefore the
maximum of S occurs on the interior of this cube, i.e., at a local maximum. Since
x = 40, y = 40, z = 40 is the only critical point, it must be a maximum.
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Question 8: 3.4.2 Find the extrema of f(x, y) = x − y subject to the constraint
x2 − y2 = 2.

Solution. By the method of Lagrange multipliers, we write the constraint as g = 0,
where g(x, y) = x2 − y2 − 2 and then write the Lagrange multiplier equations as
∇f = λ∇g. Thus, we get

1 = λ · 2x
1 = λ · 2y

x2 − y2 − 2 = 0.

First of all, the first two equations imply that x 6= 0 and y 6= 0. Hence we can
eliminate λ, giving x = y. From the last equation this would imply that 2 = 0.
Hence there are no extrema.

Question 9: 3.4.22 Let P be a point on a surface S in R3 defined by the equation
f(x, y, z) = 1, where f is of class C1. Suppose that P is a point where the distance
from the origin to S is maximized. Show that the vector emanating from the origin
and ending at P is perpendicular to S.

Solution. We want to maximize the function g(x, y, z) = x2 + y2 + z2 subject to
the constraint f(x, y, z) = 1. Suppose this maximum occurs at P = (x0, y0, z0),
then by the method of Lagrange multipliers we have the equations

2x0 = λ {∇f(x0, y0, z0)}1
2y0 = λ {∇f(x0, y0, z0)}2
2z0 = λ {∇f(x0, y0, z0)}3

where {∇f(x0, y0, z0)}i denotes the ith component of ∇f(x0, y0, z0), 1 ≤ i ≤ 3. If
v = (x0, y0, z0) is the vector from the origin ending at P, then these equations say
that v =

(
λ
2

)
· ∇f(x0, y0, z0). But ∇f(x0, y0, z0) is perpendicular to S at P, and

since v is a scalar multiple of ∇f(x0, y0, z0) it is also perpendicular to S at P.

Question 10: 3.4.28 A company’s production function is Q(x, y) = xy. The cost
of production is C(x, y) = 2x + 3y. If this company can spend C(x, y) = 10, what
is the maximum quantity that can be produced?

Solution. We want to maximize Q subject to the constraint C(x, y) = 10. Since
both x, y ≥ 0, this imposes the condition that 0 ≤ x ≤ 5, 0 ≤ y ≤ 10/3. Thus, we
wish to maximize Q on the line segment 2x+3y = 10, x ≥ 0, y ≥ 0. If the maximum
occurs at an interior point (x0, y0) of this segment, then ∇Q(x0, y0) = λ∇C(x0, y0);
that is,

y0 = 2λ
x0 = 3λ

2x0 + 3y0 = 10.

Thus 6λ + 6λ = 10, λ = 5/6, y0 = 5/3, x0 = 5/2, Q(x0, y0) = 25/6. The value of
Q at the endpoints of this segment are Q(0, 10

3 ) = 0 = Q(5, 0). Consequently the
maximum occurs at (5/2, 5/3) and the maximum value of Q is 25/6.


