
HOMEWORK 2 SOLUTIONS

All questions are from the Linear Algebra text, O’Nan and Enderton, and Vector
Calculus, Marsden and Tromba.

Question 1: 7.2.1c Show that the following matrix is diagonalizable, and find the

diagonal matrix to which it is similar:

−2 −4 −5
1 3 1
2 2 5


Solution Call the above matrix A. We will show that A is diagonalizable by

showing that it has distinct eigenvalues. The characteristic polynomial for A is

det(λI−A) = det

λ + 2 4 5
−1 λ− 3 −1
−2 −2 λ− 5

 = λ3−6λ2+11λ−6 = (λ−1)(λ−2)(λ−3).

So the matrix A has three eigenvalues: λ = 1, 2, 3, which are distinct. By Theorem
2(b) on Page 397, A is diagonalizable. Furthermore, A is similar to the diagonal

matrix with the eigenvalues of A as its entries, namely the matrix

1 0 0
0 2 0
0 0 3

.

Question 2: 7.2.2 Let T be the linear operator on P2 defined by the equation:T (f) =
f + (1 + x)f ′

(a) Calculate the eigenvalues of T .
(b) Give a diagonal matrix representing T .

Solution Let {1, x, x2} be a basis for P2. Write f(x) = a2x
2 + a1x + a0. If λ

is an eigenvalue of T , T (f(x)) = f(x) + (1 + x)f ′(x) = λf(x), and a2x
2 + a1x +

a0 + (1 + x)(2a2x + a1) = 3a2x
2 + (2a1 + 2a2)x + a0 + a1 = λa2x

2 + λa1x + λa0.
We compare the coefficients of both sides. If a2 = a1 = 0, λ = 1. Here the set of

eigenvectors is span

 1
0
0

. If a2 = 0, and a1 6= 0, λ = 2. It follows that a1 = a0, and

the set of eigenvectors is span

1
1
0

 Finally, if a2 6= 0, λ = 3. In this case, 2a2 = a1,

and a1 = 2a0. Therefore the set of eigenvectors is span

 1/2
1

1/2

. In conclusion,

the three eigenvalues are 1, 2, and 3, and the diagonal matrix representing T is1 0 0
0 2 0
0 0 3

.
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Question 3: 7.3.1f For the following matrix A determine an orthogonal ma-

trix U such that U−1AU is diagonal:

−3 −6 0
−6 0 6
0 6 3


Solution Since A is a real symmetric matrix, it is orthogonally similar to a real diag-

onal matrix. We can determine U by finding a orthonormal basis of the eigenvectors

of A. The characteristic polynomial for A is det(λI−A) = det

λ + 3 6 0
6 λ −6
0 −6 λ− 3

 =

λ3 − 81λ = λ(λ + 9)(λ − 9). So the matrix A has three eigenvalues: λ = 0, 9,−9.
For λ = 0, the eigenspaces can be found by solving the equations
−3x− 6y = 0
−6x + 6z = 0
6y + 3z = 0.

The set of solutions is span

−2
1
−2

. For λ = 9, we solve the equations

12x + 6y = 0
6x + 9y − 6z = 0
6y − 6z = 0.

The set of solutions is span

 1
−2
−2

. For λ = −9, we solve the equations

6x− 6y = 0
6x− 9y − 6z = 0
6y + 12z = 0

The set of solutions is span

−2
−2
1

. After normalization, we get eigenvectors

−2/3
1/3
−2/3

, 1/3
−2/3
−2/3

, and

−2/3
−2/3
1/3

. Since the eigenvectors correspond to distinct eigenvectors,

they’re pairwise orthogonal. Take U = 1
3

−2 1 −2
1 −2 −2
−2 −2 1

, then U is the desired

orthogonal matrix.

Question 4: 7.3.5 To what diagonal matrix is the matrix
[
a c
c b

]
similar?

Solution Call the above matrix A. Again, we see that A is real symmetric. The

characteristic polynomial for A is det(λI−A) = det
[
λ− a −c
−c λb

]
= λ2− (a+ b)λ+

(ab−c2). So the matrix A has two eigenvalues: λ = a+b+
√

(a−b)2+4c2

2 ,
a+b−

√
(a−b)2+4c2

2 .
They’re the same iff a = b, and c = 0, in which case A is itself diagonal. Otherwise,

the eigenvalues are distinct, and A is similar to the diagonal matrix

a+b+
√

(a−b)2+4c2

2 0

0 a+b−
√

(a−b)2+4c2

2


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Question 5: 7.3.7 Let A be an n × n real skew-symmetric matrix. Show that
I + A is invertible and (I −A)(I + A)−1 is orthogonal

Solution We first show that A does not have −1 as an eigenvalue. Suppose λ

is a real eigenvalue with v an (real) eigenvector. Then
Av = λv
vT AT = λvT

vT AT Av = λ2vT v
Since A is skew-symmetric, AT = −A, and
−vT A2v = λ2vT v
Now A2v = AAv = λAv = λ2v, Therefore −vT λ2v = λ2vT v. Since v 6= 0, vT v 6= 0,
and λ = 0. Therefore λ 6= −1, and det(−I − A) 6= 0. I + A = −(−I − A)is
invertible. Similarly, since 1 is not an eigenvalue of A, det(I − A) 6= 0, and
I − A is invertible. Since A and I commute, I + A commutes with I − A, and
hence I + A also commutes with (I − A)−1. Let B = (I − A)(I + A)−1; then
B−1 = (I + A)(I − A)−1 = (I − A)−1(I + A). Also, for any two matrices M
and N , (MN)T = NT MT , and (M + N)T = MT + NT . If M is invertible then
(MT )−1 = (M−1)T . Thus as AT = −A,

BT = ((I − A)(I + A)−1)T = ((I + A)−1)T (I − A)T = ((I + A)T )−1(I − A)T =
(I + AT )−1(I −A)T = (I −A)−1(I + A),

so B−1 = BT and hence B is orthogonal.

Question 6: P90.20 Show that two planes given by the equations Ax+By+Cz+
D1 = 0 and Ax + By + Cz + D2 = 0 are parrallel, and that the distance between
them is |D1−D2|√

A2+B2+C2

Solution Ai + Bj + Ck is a normal vector for both planes. Therefore the two

planes are parallel. The distance between two parallel planes is the same as the dis-
tance between a point on one of the planes and the other plane. Let P0 = (x0, y0, z0)
be a point on the plane given by Ax + By + Cz + D2 = 0. Then the distance from
P0 to the plane Ax + By + Cz + D1 = 0 is |Ax0+By0+Cz0+D1|√

A2+B2+C2 = |−D2+D1|√
A2+B2+C2 .

Question 7: P90.21 (a)Prove that the area of the triangle in the plane with ver-

tices (x1, y1), (x2, y2), (x3, y3) is the absolute value of 1
2

 1 1 1
x1 x2 x3

y1 y2 y3


(b) Find the area of the triangle with vertices (1, 2), (0, 1),(−1, 1).

Solution (a)Let a = (x1, y1), b = (x2, y2), c = (x3, y3). By Example 8, the

area of the given triangle is 1
2 ||b− a × c− a|| =

∣∣∣∣∣∣ 1
2 det(

1 0 0
0 x2 − x1 y2 − y1

0 x3 − x1 y3 − y1

)

∣∣∣∣∣∣.
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On the other hand,

∣∣∣∣∣∣ 1
2 det(

 1 1 1
x1 x2 x3

y1 y2 y3

)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2 det(

 1 0 0
x1 x2 − x1 x3 − x1

y1 y2 − y1 y3 − y1

∣∣∣∣∣∣ =∣∣∣∣∣∣ 1
2 det(

1 x1 y1

0 x2 − x1 y2 − y1

0 x3 − x1 y3 − y1

)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2 det(

1 0 0
0 x2 − x1 y2 − y1

0 x3 − x1 y3 − y1

)

∣∣∣∣∣∣
(b)By (a), the area of the given triangle is

∣∣∣∣∣∣ 1
2

1 1 1
1 0 −1
2 1 1

∣∣∣∣∣∣ =
∣∣ 1
2 (1− (1− (−2)) + 1)

∣∣ =

1
2 by expanding the first row.

Question 8: P90.34 (a)If a particle with mass m moves with velocity v, its mo-
mentum is p = mv. In a game of marbles, a marble with mass 2 grams is shot with
velocity 2 meters per second, hits two marbles with mass 1g each, and comes to a
dead halt. One of the marbles flies off with a velocity of 3m/s at an angle of 45 to
the incident direction of the larger marble as in Figure. Assuming that the total
momentum before and after the collision is the same, at what angle and speed does
the second marble move?

Solution Before the collision, the total momentum pb just consists of the mo-

mentum of the larger marble, and pb = 2(2i) = 4img/s. After the collision, the
known velocity of a marble is v1 = 3 cos(π

4 )i + 3 cos(π
4 )jm/s. Let v2 denote the

velocity of the other marble, and pf the total momentum after the collision. By
conservation of momentum, pb = pf , and 4i = 1(v1+v2) = 3 cos(π

4 )i+3 cos(π
4 )j+v2.

Therefore, v2 = (4− 3
√

2
2 )i− ( 3

√
2

2 )j. |v2| =
√

(4− 3
√

2
2 )2 + ( 3

√
2

2 )2 =
√

25− 12
√

2.
The angle is θ = − tan−1(3

√
2/(8− 3

√
2))

Question 9: 2.1.16 Describe the graph of each function by computing some level
sets and sections. f(x, y, z) = xy + z2.

Solution The level set with value c is the set (x, y, z)|xy + z2 = c. When x or

y is a constant t 6= 0, we are looking at equation of the form tw + z2 = c, which
is a parabola. If t = 0, z2 = c, which gives 2 lines. If z is a constant t, we have
xy + t = c, which is a hyperbola.

Question 10: 2.1.24 Sketch or describe the surface of the equation y2

9 + z2

4 =
1 + x2

16 .

Solution If x is a constant k, we’re looking at y2

9 + z2

4 = 1 + k2

16 , which defines an

ellipse. If y or z is a constant k, we have z2

4 − x2

16 = 1 − k2

9 , or y2

9 − x2

16 = 1 − k2

4 .
In the first equation, if y = k = 3, we get two lines with slopes additive inverses of
each other. Similarly for z = k = 2. Otherwise, we get hyperbolas.


