Mathematics 1c. Practice Final Examination

J. Marsden

Print Your Name:
 Your Section:

- This exam has ten questions.
- You may take four hours; there is no credit for overtime work
- No aids (including notes, books, calculators etc.) are permitted.
- The exam MUST be turned in by noon on Thursday, June 12.
- All 10 questions should be answered on this exam, using the backs of the sheets or appended pages as needed. Each question is worth 20 points.
- Show all your work and justify all claims using plain English.
- Good Luck !!

1
2
3
4
5
6
7
8
9
10

1. (a) Suppose that an operator $T: V \rightarrow V$ on a vector space V has at least one nonzero eigenvalue and that some integer power of T is zero. Can T be diagonalizable?
(b) Let V be the vector space of real polynomials of degree 3 .
i. What is the dimension of V ?
ii. Is the operator $T: V \rightarrow V$ defined by $T(p)=x^{2} p^{\prime \prime}$ diagonalizable?
iii. Is the operator $S: V \rightarrow V$ defined by $S(p)=x p^{\prime \prime}$ diagonalizable?
2. Let B be an $n \times n$ matrix that is symmetric, orthogonal, and has determinant equal to one.
(a) Show that \mathbb{R}^{n} has a basis of eigenvectors of B and that each eigenvalue of B is either 1 or -1 .
(b) Give a concrete example (other than the identity matrix) of a 3×3 matrix B that is symmetric, orthogonal, and has determinant equal to one.
(c) Give a geometric interpretation of your example as a linear transformation of \mathbb{R}^{3} to \mathbb{R}^{3}.
3. Let a particle of mass m move along the elliptical helix $\mathbf{c}(t)=(4 \cos t, \sin t, t)$.
(a) Find the equation of the tangent line to the helix at $t=\pi / 4$.
(b) Find the force acting on the particle at time $t=\pi / 4$.
(c) Write an expression (in terms of an integral) for the arc length of the curve $\mathbf{c}(t)$ between $t=0$ and $t=\pi / 4$.
4. (a) Let $g(x, y, z)=x^{3}+5 y z+z^{2}$ and let $h(u)$ be a function of one variable such that $h^{\prime}(1)=1 / 2$. Let $f=h \circ g$. In what directions starting at $(1,0,0)$ is f changing at 50% of its maximum rate?
(b) For $g(x, y, z)=x^{3}+5 y z+z^{2}$, calculate $\mathbf{F}=\nabla g$, the gradient of g and verify directly that $\nabla \times \mathbf{F}=\mathbf{0}$ at each point (x, y, z).
5. Let $f(u, v, w)$ be a (smooth) function of three variables, let $h(r, s)=(r, r+$ $s, r-s)$ and let $g=f \circ h$.
(a) Calculate $\frac{\partial^{2} g}{\partial r \partial s}$ in terms of the derivatives of f.
(b) Consider the curve in the plane defined by $\mathbf{c}(t)=(\cos t, \sin t)$ and the curve in space defined by $\mathbf{d}(t)=(h \circ \mathbf{c})(t)$, where h is as given above. Find the equation of the tangent line to $\mathbf{d}(t)$ at $t=0$.
(c) Find an expression as an integral for the arc length of the curve $\mathbf{d}(t)$ between $t=0$ and $t=\pi / 4$.
6. Let $f(x, y, z)=x+z$ and let $g(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a) Find the maximum point $\left(x_{0}, y_{0}, z_{0}\right)$ of f subject to the constraint $g=1$.
(b) Let V be the plane containing all vectors in \mathbb{R}^{3} tangent to the surface $g=1$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ found in part (a).
(i) Find an equation for the plane V.
(ii) Let A be a 3×3 matrix whose transpose A^{T} is such that $A^{T} \mathbf{v}$ lies in V whenever \mathbf{v} does. Show that

$$
A \nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla f\left(x_{0}, y_{0}, z_{0}\right)
$$

for a constant λ.
7. (a) Let D be the parallelogram in the $x y$-plane with vertices

$$
(0,0),(1,1),(1,3),(0,2) .
$$

Evaluate the integral

$$
\iint_{D} x y d x d y .
$$

(b) Evaluate

$$
\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \exp \left[\left(x^{2}+y^{2}+z^{2}\right)^{2}\right] d x d y d z
$$

where D is the region defined by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$ and $z \geq \sqrt{x^{2}+y^{2}}$.
8. For each of the questions below, indicate if the statement is true or false. If true, justify (give a brief explanation or quote a relevant theorem from the course) and if false, give an explanation or a counterexample.
(a) If $P(x, y)=Q(x, y)$, then the vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is a gradient.
(b) The flux of any gradient out of a closed surface is zero.
(c) There is a vector field \mathbf{F} such that $\nabla \times \mathbf{F}=y \mathbf{j}$.
(d) If f is a smooth function of $(x, y), C$ is the circle $x^{2}+y^{2}=1$ and D is the unit disk $x^{2}+y^{2} \leq 1$, then

$$
\int_{C} e^{x y} \frac{\partial f}{\partial x} d x+e^{x y} \frac{\partial f}{\partial y} d y=\iint_{D} e^{x y}\left[y \frac{\partial f}{\partial y}-x \frac{\partial f}{\partial x}\right] d x d y
$$

(e) For any smooth function $f(x, y, z)$, we have

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{x+y} f(x, y, z) d z d y d x=\int_{0}^{1} \int_{0}^{y} \int_{0}^{x+y} f(x, y, z) d z d x d y
$$

9. Let W be the three dimensional region defined by

$$
x^{2}+y^{2} \leq 1, \quad z \geq 0, \quad \text { and } \quad x^{2}+y^{2}+z^{2} \leq 4
$$

(a) Find the volume of W.
(b) Find the flux of the vector field $\mathbf{F}=(2 x-3 x y) \mathbf{i}-y \mathbf{j}+3 y z \mathbf{k}$ out of the region W.
10. Let $f(x, y, z)=x y z e^{x y}$.
(a) Compute the gradient vector field $\mathbf{F}=\nabla f$.
(b) Let C be the curve obtained by intersecting the sphere $x^{2}+y^{2}+z^{2}=1$ with the plane $x=1 / 2$ and let S be the portion of the sphere with $x \geq 1 / 2$. Draw a figure including possible orientations for C and S; state Stokes' theorem for this region.
(c) With \mathbf{F} as in (a) and S as in (b), let $\mathbf{G}=\mathbf{F}+(z-y) \mathbf{i}+y \mathbf{k}$, and evaluate the surface integral

$$
\iint_{S}(\nabla \times \mathbf{G}) \cdot d \mathbf{S}
$$

