Mathematics 1c, Spring 2008. Practice Midterm Examination

J. Marsden

Print Your Name:

Your Section:

- This exam has five questions.
- This exam should take about 3.5 to 4 hours to complete. The real midterm will be constructed so that students who are well versed in the material will require 3 hours. Thus, the real exam will be a 3 hour exam. There is no credit for overtime work.
- No aids (including notes, books, calculators etc.) are permitted.
- The real exam must be turned in by noon on Wednesday, May 7.
- All 5 questions should be answered on this exam, using the backs of the sheets or appended pages if necessary.
- Show all your work and justify all claims using plain and proper English.
- Each question is worth 20 points.
- Good Luck !!

1. Consider the matrix

$$
A=\frac{1}{2}\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]
$$

(a) Is A diagonalizable?
(b) Is A invertible?
(c) Find the eigenvalues and eigenvectors of A
(d) Compute $\left(A^{-1}\right)^{6}$
2. Let A be a 3×3 orthogonal matrix.
(a) Show that the determinant of A is ± 1.
(b) Let λ be a real eigenvalue of A. Show that $\lambda= \pm 1$
(c) Suppose that A is orthogonal and $\operatorname{det} A=1$. Show that at least one eigenvalue of A equals 1 . Must one of them equal -1 as well?
(d) Give an example of a 3×3 orthogonal matrix that is not diagonalizable (as a real matrix).
3. Do each of the following calculations
(a) Find the tangent vector to the curve

$$
\boldsymbol{\sigma}(t)=e^{1-t} \mathbf{i}-t^{2} \mathbf{j}+\sin (\pi t / 2) \mathbf{k}
$$

at the point $t=1$.
(b) If a particle following the curve in (a) flies off on a tangent at $t=1$, where is it at $t=2$?
(c) Find the gradient of the function

$$
f(x, y, z)=y z \sin (\pi x)-x y z
$$

at the point $(1,1,2)$.
(d) Find the equation of the tangent plane to the graph of

$$
z=3 y^{2}-x^{3}+2
$$

at the point on the graph with $x=1$ and $y=-1$.
(e) Calculate the gradient of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=-3 r^{-2}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Verify that the gradient is orthogonal to the level sets of f.
4. Let $f(x, y, z)$ be a given (smooth) function defined on the whole of \mathbb{R}^{3}.
(a) Let $\boldsymbol{\sigma}(t)=t \mathbf{i}-e^{t} \mathbf{j}-t^{3} \mathbf{k}$. Write the chain rule for $f \circ \boldsymbol{\sigma}$ in gradient and component notation.
(b) If the gradient ∇f has a positive z component in the half space $z \geq 0$, must $f(1,2,1)$ be larger than $f(1,2,0)$? Must it be larger than $f(0,-1,0)$? Prove or find a counter example.
(c) If $f(x, y, z)=x^{2}-y^{2}+z^{4}$, find the derivative of f in the direction of the vector $\mathbf{i}-\mathbf{j}$ at the point $(1,-1,1)$.
(d) In what direction is the function in (c) increasing the fastest at $(1,-1,1)$?
(e) In what directions is the function in (c) increasing at half its maximum rate at the point $(1,-1,1)$?
5. This problem has three main parts.
(a) Consider the two functions defined on \mathbb{R}^{3} by

$$
U=x^{2}-y^{2}+\sin z \quad \text { and } \quad V=x y \cos (x z)
$$

i. Suppose that (x, y, z) are functions of new variables (u, v). Write out the chain rule for this situation, giving the derivatives of U and V as functions of (u, v) in matrix notation.
ii. Consider the specific situation in which $x=u-v, y=u+v$ and $z=u$. Calculate the derivative matrix of the resulting map of (u, v) to (U, V) evaluated at $u=1, v=0$.
(b) Find the extreme points of $f(x, y, z)=x+y+z$ subject to the two constraints $x^{2}+y^{2}=5$ and $y+2 z=3$.
(c) Let $f(x, y)=x^{2}+3 x y+y^{2}+16$. Calculate the eigenvalues of the matrix of second partial derivatives of f at the origin. Using this information alone, determine if the origin is a maximum, a minimum or a saddle point.

