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A Moveable Feast: Researchers Seek
Stability in Lability y
By Barry A. Cipra

Nothing endures but change.
-Heraclitus

Eigenvalues. Fixed points. Stable equilib-
ria. Mathematicians like things that stay put.
And if they can't stay put, the objects of
study should at least repeat themselves on a
regular basis, like orbiting planets or popu-
lations of predators and prey. Even in the
case of chaotic systems, mathematicians
have traditionally gravitated toward invari-
ant features, such as strange attractors, sta-
ble manifolds, and periodic points.

What makes this tradition possible is that
dynamical systems-at least the ones math-
ematicians favor-are governed by equa-
tions that depend on time either cyclically or
not at all. But nature doesn't always oblige.
Many phenomena require equations whose
coefficients are non-periodic functions of
time. Indeed, many-arguably most-phe-
nomena can be described not by equations
at all, but only as an amalgam of time-vary-
ing data.

Are such dynamical systems beyond the
reach of analysis? Hardly. Applied mathe-
maticians are developing new tools for the
study of time-dependent, data-driven dyn-
amical systems. In the process, they are
stretcl)ing and bending some of the tradi-

~'~nal ooncepts of dynamical systems-but
. withaneyeonretainingtheirinvariantcore.

In a wide-ranging John von Neumann
lecture on geometric mechanics and compu-
tational dynamical systems at the 2005
SIAM Annual Meeting, Jerry Marsden of
Caltech highlighted one of the tools current-
ly taking shape: Lagrangian coherent struc-
tures. Introduced in 2000 by George Haller,
now at MIT, in a paper with Guo-Cheng

Yuan of Brown University, and elaborated
by Haller in a series of subsequent papers,
Lagrangian coherent structures enable
researchers to spot non-obvious boundaries
in complicated flows. These quasi-invariant
objects have been studied in a variety of
computational dynamical systems and
applications, including a model of the
spread of pollution by ocean currents off the
coast of Florida, and even a model of the
biochemical process of apoptosis, i.e., cell
death.

liming Is Everything
Roughly speaking, a Lagrangian coherent

structure (LCS) is a mobile separatrix with,
at worst, a slow leak. More precisely, an
LCS is a material line (or surface) that
remains hyperbolic for a locally maximal
amount of time. An LCS can be identified,

for example, as a "ridge" in a scalar field of
"direct," finite-time Lyapunov exponents
associated with the dynamical system.
Indeed, following earlier work by Haller
and co-workers, Marsden, Fran~ois Lekien
of Princeton, and Shawn Shadden of
Caltech have proposed ridges as the defini-
tion of a Lagrangian coherent structure.

Making sense of these descriptions calls
for some unpacking of terminology.

One of the basic steps in analyzing a
dynamical system is to identify regions of
qualitatively different dynamics and find the
boundaries between them. That's what a

separatrix does for "autonomous" sys-
tems-i.e., systems whose equations don't
depend on time. The classic example is the
mathematical pendulum, defined by the
(normalized) equations dxldt =y and dyldt
=-sin x. The separatrix is the curve separat-

ing normal, back-and-forth oscillation and

x

Figure 1. Eve on the prize. The phase dia-
gram for the simple pendulum features a
separatrix. Figure adapted from Shawn
Shadden, www.cds.caltech.edu/-shawn/
LCS-tutorial.

high-speed clockwise or counterclockwise
spinning (see Figure 1). Because there's no
time dependence in the equations of the
pendulum, this boundary doesn't move.

For non-autonomous systems, all bets are
seemingly off. But here too, regions with
qualitative differences exist, at least for a
while. It's just that the boundaries between
them tend to wander and, in some cases, dis-

appear. Their waywardness suggests a
Lagrangian, as opposed to Eulerian, ap-
proach to the analysis. (In fluid dynamics, a
Lagrangian approach follows particle tra-
jectories, whereas the Eulerian viewpoint
sticks to a single, fixed frame of reference.)
Their tendency to disappear suggests aban-
doning, or at least modifying, any analytic
tool based on asymptotic limits in time.

Enter finite-time Lyapunov exponents.
The traditional Lyapunov exponent is an
asymptotic object; roughly speaking, it
tracks the extent to which infinitely close
particles separate in an infinite amount of
time. For autonomous systems, this has
immediate, short-term significance. For
non-autonomous, not to mention data-
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defined, systems, it's meaningless. But it's
still possible to measure the change in sepa-
ration over a finite time interval. The formal

definition of a finite-time Lyapunov expo-
nent (FILE) is fairly technical, but the
upshot is the assignment of a number to
each point (x,y) that measures how strongly
the trajectory starting there at time t will
separate from nearby trajectories by time
t + T. The definition of a ridge is also fairly
technical, but the term itself offers an intu-
itive explanation: A ridge is a path in the
Lyapunov landscape that, while it may.(and
usually does) go up and down in its tangent
direction, definitely drops off steeply on
eitherside. -

Finite-time Lyapunov exponents are also
called direct Lyapunov exponents (DLEs),
because they can be determined directly
from particle trajectories. (Marsden prefers
the acronym FILE, in part, he explains, to
distinguish FILEs from finite-space Lya-
punov exponents, or FSLEs.) This attribute
makes them especially suitable for the com-
putational analysis of real-world data.
Lekien, Haller, Marsden, and colleagues
Chad Coulliette of Caltech and Arthur

Mariano, Edward Ryan, and Lynn Shay of
the University of Miami have used them
with radar data measuring ocean surface
currents along the coast of Florida near Fort
Lauderdale.

The analysis revealed an LCS attached to
the coast and extending to the southeast (see
Figure 2). This LCS separates the Florida
Current from a zone of recirculation. Its

existence-and especially the fact that it
moves-has obvious implications for the
fate of any pollutants released in the area. In
particular, Haller points out, it matters not
only where you dump your effluent, but also
when. The ability to predict the motion of
the LCS, the researchers have shown, pro-
vides the basis for a real-time pollution-con-
trol algorithm.

Go with the Flow

AnLCSis not,in general,a perfectbarri-
er; over time, particleson one side of an
LCS may make it to the other side-a
Lagrangian coherent structure, that is, might
more properly be described as quasi-
Lagrangian. The flux across an LCS is usu-
ally very small (or non-existent) in practice,
however. Marsden, Lekien, and Shadden

quantified this for their finite-time,
Lyapunov-exponent-based definition. They
showed that, up to an error term that scales
as 1/T, the flux across an LCS depends on
the product of two terms: one that measures
the sharpness of the ridge and one that rep-
resents the difference between the local
rotation rate of the LCS and that of the

ambient, Eulerian velocity field. In -the
Florida coastline example, the computed
crossing rate was less than two meters per
hour, or about 0.05% of the average flow
speed in the vicinity of the LCS.

Some of the most exciting applications of
Lagrangian coherent structures are in the
life sciences. Marsden, Shadden, and John
Dabiri, a professor of aeronautics and bio-
engineering at Caltech, have computed an
LCS in the fluid surrounding a free-swim-
ming jellyfish. Superimposed on a video of
the jellyfish, the LCS shows how fluid-and
nutrients-are entrained within the critter's

jellybelly (more properly called the subum-
brellar region). T~e animation can be found
at http://www.cds.caltech.edu/-marsden/
research/demos/fluidtransport.php (or by
googling "shadden jellyfish").

Marsden's group is also working with
Charles Taylor of Stanford University on
computational studies -of cardiovascular

Figure 2. An LCS off the coast of Florida indi-
cates the boundarybetween two regions of
qualitativelydifferent dynamics. The mean-
dering of the LCS has implications for the
fate of pollutants released in the vicinity.
Figurecourtesy of Franr;oisLekien,based on
OSCR data collected during the 40 current
experiment by TomCook, BrianHaus,Arthur
Mariano,Jorge Martinez, Lynn Shay, and Ed
Ryan at the Rosentiel School of Marineand
Atmospheric Science in Miami.
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Figur.e 3. A schematic of the programmed cell death decision pathway. Figure courtesy of Bree
Aldridge. Peter Sorger. and Douglas Lauffenburger. 0

flows (see SIAM News, October 2005, page
1; http://www.siam.org/news/news.php?id
=160). The computation of LCSs from, say,
MRI data can show if a zone of recirculation

o is lingering in one spot-a bad thing, in that
recirculation promotes blood clot formation
and plaque build-up, also known as harden-
ing ofthe arteries. (According to Taylor, one
of the benefits of exercising is that it breaks
up these zones.) In the (non-asymptotic) fu-
ture, your cardiologist may judge the state
of your health by measuring your Lyapunov
exponents.

Death, too, is coming into the fold. Haller
and colleagues Bree Aldridge, Peter Sor-
ger, and Douglas Lauffenburger, all of the
biological engineering division at oMIT,
recently used Lyapunov exponents to ana-

lyze a mathematical model of transient sig-
naling in a protein network involved in
apoptosis. The network consists of eight
forms or combinations of three proteins,
two (caspase-3 and caspase-8) that promote
cell death and one (XIAP) that inhibits it
(see Figure 3). They were able to find a 0

DLE-defined LCS that separates apoptosis
from survival. With functional genomics
and proteomics shouldering more and more
of the burden of biomedicine, the non-
steady-state analysis of cellular networks
will likely loom large. As John Maynard
Keynes said in the econ- branch of -omics,
"In the long run, we are all dead."

Barry A. Cipra is a mathematician and
writer based in Northfield, Minnesota.
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