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Abstract

With an environment comparable to that of primordial Earth, a surface strewn with liquid hydrocar-
bon lakes, and an atmosphere denser than that of any other moon in the solar system, Saturn’s largest
moon Titan is a treasure trove of potential scientific discovery and is the target of a proposed NASA
mission scheduled for launch in roughly one decade. A chief consideration associated with the design of
any such mission is the constraint imposed by fuel limitations that accompany the spacecraft’s journey
between celestial bodies. In this study, we explore the use of patched three-body models in conjunction
with a discrete mechanical optimization algorithm for the design of a fuel-efficient Saturnian moon tour
focusing on Titan. In contrast to the use of traditional models for trajectory design such as the patched
conic approximation, we exploit subtleties of the three-body problem, a classic problem from celestial
mechanics that asks for the motion of three masses in space under mutual gravitational interaction, in
order to slash fuel costs. In the process, we demonstrate the aptitude of the DMOC (Discrete Mechanics
and Optimal Control) optimization algorithm in handling celestial mechanical trajectory optimization
problems.

1 Introduction

Saturn’s moon Titan is a treasure trove of potential scientific discovery. With an environment comparable
to that of primordial Earth and an atmosphere denser than that of any other moon in the solar system [1],
Titan is so shrouded in intrigue that it has even been named a potential sustainer of extraterrestrial life [2].
The Cassini-Huygens mission’s recent discovery of hydrocarbon lakes on the surface of Titan [3] has inspired
the National Aeronautics and Space Administration (NASA) to proclaim its goal of deploying a mission to
Titan once again.

A chief consideration associated with the design of any such mission is the constraint imposed by fuel
limitations that accompany the spacecraft’s journey between celestial bodies. By minimizing fuel costs
associated with orbital maneuvers, a well-designed trajectory can simultaneously decrease mission expenses,
increase the carrying capacity of the spacecraft, and broaden the realm of visitable sites en route. This is
especially important in light of the fact that NASA has expressed interest in expanding the Titan mission
to include a flyby of Saturn’s geologically active moon Enceladus, as well as other moons of Saturn if such
a route proves feasible.

For a complex mission like a Saturnian moon tour, multi-body dynamics play a prominent role. Exploiting
the natural dynamics of the three-body problem, a classic problem from celestial mechanics that asks for the
motion of three masses in space under mutual gravitational interaction, has been shown to greatly improve
fuel efficiency for missions of this type [4]. Traditional models used to design mission trajectories involve
the so-named patched conic approximation, which divides the problem into a mosaic of two-body problems:
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when the spacecraft is near a mass like a planet, only that planet’s influence on the craft is considered;
when the spacecraft exits the planet’s “sphere of influence,” it enters that of another body and only the new
body’s gravitational effects are considered [5]. If one instead treats the problem as a patchwork of three-
body problems (the Saturn-Titan-spacecraft and the Saturn-Enceladus-spacecraft systems, for example),
new classes of fuel-efficient trajectories emerge. NASA’s Genesis Discovery mission, for instance, exploited
subtleties in the dynamics of the Sun-Earth-spacecraft system to traverse a route whose intricacies simpler
models like the patched conic approximation fail to describe adequately [6]. The key feature of the three-
body problem that permits such dramatic improvement to space mission design is the presence of invariant
manifolds—sets of points in the system’s phase space that tend toward a given limiting set as time tends to
plus or minus infinity—of certain periodic solutions to the three-body problem equations of motion. As Koon
and co-authors [7] demonstrate, a globalization of the stable and unstable manifolds of periodic orbits about
the L1 and L2 Lagrange points (unstable equilibrium points in the the circular restricted three-body problem)
reveals a web of tubes through phase space that form separatrices between its dynamically different regions.
This labyrinth of cylindrical tubes, dubbed an “interplanetary transport network” [5], can be exploited to
design trajectories that use extremely little fuel to navigate complex routes.

In this study, we explore the use of patched three-body models in conjunction with a discrete mechanical
optimization algorithm for the design of a fuel-efficient Saturnian moon tour focusing on Titan. To achieve
this goal, we begin by giving an introduction to tube dynamics in the circular restricted three-body problem,
followed by a description of the DMOC (Discrete Mechanics and Optimal Control) optimization algorithm.
We then demonstrate the manner in which these tools can be applied to a well-studied trajectory design
problem, namely the problem of constructing a low-fuel trajectory from the Earth to the Moon. Finally,
we couple the theory of invariant manifolds with the use of resonant gravity assists in order to design a
fuel-efficient tour of the Saturnian moon system.

2 Methods

This section provides background material on the tools to be used in Section 3 for space mission trajectory
design: the circular restricted three-body problem (CR3BP), invariant manifolds in the CR3BP, and the
DMOC (Discrete Mechanics and Optimal Control) optimization algorithm.

2.1 The Circular Restricted Three-Body Problem (CR3BP)

The circular restricted three-body problem (CR3BP) considers the motion of a test mass m3 = 0 in the
presence of the gravitational field of two primary masses m1 = 1 − µ and m2 = µ in circular orbit about
their center of mass. Throughout the paper, all motion is assumed to take place within the m1-m2 orbital
plane. Without loss of generality, all units are normalized and positions are defined relative to a rotating
coordinate frame whose x-axis coincides with the line joining m1 and m2 and whose origin coincides with the
center of mass of m1 and m2, as shown in Fig. 1. The equations of motion for the test particle are then [8]

ẍ− 2ẏ =
∂Ω
∂x

(1)

ÿ + 2ẋ =
∂Ω
∂y

, (2)

where

Ω(x, y) =
x2 + y2

2
+

1− µ√
(x + µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
+

1
2
µ(1− µ) (3)
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Figure 1: Rotating coordinate system in the circular restricted three-body problem. All units are nondimen-
sionalized. The coordinate frame rotates counterclockwise with unit angular frequency so that the primary
masses m1 and m2 remain fixed at the positions (−µ, 0) and (1− µ, 0), respectively.

and (x, y) denotes the position of m3 in the rotating frame.
There are five equilibrium points (Lagrange points) Li, i = 1, 2, 3, 4, 5, in the CR3BP [8], corresponding

to critical points of the effective potential Ω. Three of these points (L1, L2, and L3) are collinear with the
masses m1 and m2, while the remaining two (L4 and L5) lie at the vertices of the pair of equilateral triangles
whose bases coincide with the line segment joining m1 and m2 (see Fig. 2(b)). Let Lx

i and Ly
i denote the x

and y coordinates, respectively, of ith Lagrange point.
It is straightforward to check through differentiation that

E(x, y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2)− Ω(x, y) (4)

is a constant of motion for the CR3BP. We shall refer to this constant as the energy of the system. Throughout
this report, E(Li) shall denote the energy of the ith Lagrange point, i.e. E(Li) = E(Lx

i , Ly
i , 0, 0). Since E is

constant in the CR3BP and (ẋ2 + ẏ2) is a nonnegative quantity, it immediatelly follows that m3 is restricted
to regions of the (x, y) plane where

−Ω(x, y) ≤ E. (5)

Moreover, a given particle in the CR3BP is constrained to a three-dimensional energy surfaceM = {(x, y, ẋ, ẏ) |
E(x, y, ẋ, ẏ) = const.} defined by its initial energy.

2.2 Invariant Manifolds

The presence of forbidden regions in the CR3BP permits the definition of three subsets of the (x, y) plane
when E(L2) < E < E(L3): the interior, m2, and exterior regions, bounded approximately by the lines
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Figure 2: (a) Regions of allowed motion (white areas) in the circular restricted three-body problem with
µ = 0.1, E = −1.775. (b) Equilibrium points Li, i = 1, 2, 3, 4, 5, in the circular restricted three-body problem
with µ = 0.1.

x = Lx
1 , x = Lx

2 , and the boundary of the forbidden regions (see Fig. 2(a)). A natural question to pose now
is the following: What regulates the transport of particles between the interior, m2, and exterior regions in
the CR3BP?

Koon and co-authors [7] provide the answer to this question through analysis of the invariant manifolds
of periodic orbits in the CR3BP. By linearizing the equations of motion at the collinear Lagrange points,
the authors show that these equilibrium points have the stability type saddle× center. Consequently, there
exists a family of periodic orbits (called Lyapunov orbits) about Li for each i ∈ {1, 2, 3}, whose stable and
unstable manifolds form cylindrical tubes (S1 × R). Within a surface of constant energy, these tubes (as
shown in Fig. 3) form codimension-1 separatrices between orbits with different fates: transit orbits, which
exit one region and enter an adjacent region; and non-transit orbits, which remain entrapped in the region in
which they began. More precisely, a particle with energy E that is currently in a given region RA will enter
an adjacent region RB under the forward (respectively, backward) time flow if and only if that particle is
inside the stable (respectively, unstable) manifold tube emanating from the unique periodic orbit of energy
E associated with the Lagrange point that lies on the shared boundary of regions RA and RB .

Computational methods for determining the CR3BP invariant manifolds are well-developed [10, 11].
To sumarize the procedure, one first constructs a periodic orbit with a specified energy using differential
correction. The evolution of the periodic orbit’s state transition matrix is computed over one period, and local
approximations of the stable and unstable manifolds of the periodic orbit are obtained from the eigenvectors
of that state transition matrix. A set of tracers in the directions of the stable and unstable eigenspaces
can then be advected under the full nonlinear equations of motion to generate the invariant manifolds.
The process can be curtailed by exploiting a symmetry in the CR3BP equations of motion: the mapping
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Figure 3: Projection of the stable (green) and unstable (red) manifold tubes in the CR3BP onto position
space. Image borrowed from Gomez et al. [9].

(x, y, ẋ, ẏ, t) 7→ (x,−y,−ẋ, ẏ,−t) is a symmetry of equations (1-2); as a result, the unstable manifold of a
given Lyapunov orbit can be found by negating the y and ẋ coordinates of every point on the corresponding
stable manifold.

2.3 Discrete Mechanics and Optimal Control (DMOC)

DMOC (short for Discrete Mechanics and Optimal Control) is an algorithm designed for the solution of
optimal control problems for which the underlying dynamical system is mechanical in nature [12]. As such,
DMOC is well-suited for the design of space mission trajectories, where one seeks to utilize control forces to
target desirable destinations in a multi-body dynamics problem, using as little fuel as possible and meeting
various time constraints. Often the aim is to minimize a trajectory’s total ∆V , the sum of the spacecraft’s
instantaneous velocity changes spawning from thrusts applied over the course of its flight. In order to execute
such a minimization, one must have a means of numerically integrating the system’s equations of motion.
For mechanical systems like the three-body problem, numerical integration algorithms which respect the
structure of the mechanical system at hand by accurately capturing the evolution of quantities like energy
and momentum and respecting the symplectic nature of the system’s flow are highly desirable [13]. For
this reason, the DMOC algorithm relies on the use of a class of numerical integrators called variational
integrators.

Variational integrators may be derived by viewing mechanical systems from the standpoint of variational
mechanics. Particularly, a fundamental principle from classical mechanics called Hamilton’s principle of crit-
ical action [14] states that a mechanical system whose configuration is described by a generalized coordinate
vector q(t) will evolve such that the so-called action integral∫ T

0

L(q(t), q̇(t)) dt (6)

is extremized subject to fixed endpoints q(0) = q0 and q(T ) = qf , where L(q(t), q̇(t)) is the system’s kinetic
energy minus potential energy at time t. Treating the curve q(t) which extremizes (6) as a member q0(t) of
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a one-parameter family of curves {qε(t) | ε ∈ (−ε0, ε0) ⊂ R} satisfying qε(0) = q0 and qε(T ) = qf for all ε
and abbreviating d

dε

∣∣
ε=0

as δ, Hamilton’s principle may be written succinctly as

δ

∫ T

0

L(q(t), q̇(t)) dt = 0 (7)

for all variations δq(t) satisfying δq(0) = δq(T ) = 0. Calculus of variations then shows that (7) holds only if
q(t) satisfies the Euler-Lagrange equations:

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (8)

As an example, consider a particle moving in R3 in the presence of a potential V (q), where q is the usual
cartesian position vector (x, y, z). Then L = 1

2 q̇T Mq̇ − V (q) and equation (8) reduces to Newton’s second
law, force equals mass times acceleration:

Mq̈ = −∇V (q). (9)

To derive a variational integrator, one discretizes the action integral (6) and uses a discrete version of the
Euler-Lagrange equations (8) to define a map (qk−1, qk) 7→ (qk, qk+1), where qk ≈ q(kh) and h is a time step.
This map is then applied recursively to a set of initial conditions (q0, q1) to produce a discrete curve of points
{qk}T/h

k=0 that approximates q(t) over the time interval [0, T ]. Different variational integrators, possibly with
differing orders of accuracy, can be constructed using different quadrature methods for the discretization of
the action integral (6) [15].

Three distinguishing features of constant time-stepping variational integrators applied to conservative
mechanical systems are exact momentum conservation, symplecticity (for systems with one degree of freedom,
this property can be realized as preservation of area in phase space under the discrete Lagrangian map
(qk−1, qk) 7→ (qk, qk+1)), and accurate energy behavior [16].

We are interested in designing trajectories which utilize control forces to target desirable destinations. For
instance, a mission through the Saturnian moon system might require thrust to transfer from one elliptical
orbit about Saturn to another. To incorporate such forcing, we invoke a generalization of Hamilton’s principle
of critical action called the Lagrange-d’Alembert principle [17], which says that in the presence of a non-
conservative force f(t), the evolution of a mechanical system is a curve q(t) satisfying

δ

∫ T

0

L(q(t), q̇(t)) dt +
∫ T

0

f(t) · δq(t) dt = 0 (10)

for all variations δq(t) with δq(0) = δq(T ) = 0.
To derive a mechanical integrator based upon this forced principle of critical action, we approximate the

curve q(t) with a discrete sequence of points {qk}N
k=0 where qk ≈ q(kh) and h is a time step. We then seek

solutions to

δ

N−1∑
k=0

Ld(qk, qk+1, h) +
N−1∑
k=0

(f−k · δqk + f+
k · δqk+1) = 0, (11)

where the action integral (6) is approximated over each subinterval [kh, (k +1)h] with a discrete Lagrangian
Ld satisfying

Ld(qk, qk+1, h) ≈
∫ (k+1)h

kh

L(q(t), q̇(t)) dt, (12)
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and the second term of (10) is approximated with discrete forces f−k and f+
k satisfying

f−k · δqk + f+
k · δqk+1 ≈

∫ (k+1)h

kh

f(t) · δq(t) dt. (13)

In analogy with the continuous case, it can be shown that (11) is satisfied only if the sequence {qk}N
k=0

satisfies the forced discrete Euler-Lagrange equations

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) + f+
k−1 + f−k = 0 (14)

for each 0 < k < N , where DiLd denotes the derivative of Ld with respect to its ith argument.
Typically, we seek controlled trajectories which not only satisfy Newton’s laws and reach desired desti-

nations, but also minimize fuel costs, time of flight, and the like. We can encapsulate these aims by defining
a cost function J(q, f) which we seek to minimize. For instance, to minimize a space mission trajectory’s
∆V , we set J(q, f) =

∫ T

0
||f ||dt, approximated via numerical quadrature of definite integrals. The DMOC

optimization problem can then be posed as follows: Given an initial guess trajectory {qk}N
k=0 and an initial

guess control trajectory {fk}N−1
k=0 , vary {qk}N

k=0 and {fk}N−1
k=0 in order to minimize the cost functional J(q, f)

subject to the constraint equations (14). This is an equality constrained nonlinear optimization problem,
a standard problem in the field of nonlinear programming whose solution may be computed with any of a
number of numerical algorithms, such as a sequential quadratic programming (SQP) routine [18, 19].

3 Results

In this section, we demonstrate the manner in which invariant manifold theory from three-body problem,
when coupled with the use of the DMOC optimal control algorithm, can be exploited to tackle a well-studied
trajectory design problem often reffered to in the literature as the “Shoot the Moon” problem: the problem
of constructing a low-fuel trajectory from the Earth to the Moon. We then shift our focus to Titan mission
trajectory design problem, invoking a technique involving resonant gravity assists in order to target CR3BP
invariant manifolds in the Saturn-Titan-spacecraft system and design a fuel-efficient trajectory through the
Saturnian moon system.

3.1 Shoot the Moon

Consider the following problem: design a trajectory, requiring as little fuel as possible, from the Earth to the
Moon. This so-called “Shoot the Moon” problem is of obvious practical importance and has been studied in
detail by Koon and co-authors [20] with the aid of invariant manifolds in the circular restricted three-body
problem. For the purposes of this report (and to facilitate comparison with previous results reported by
Koon and co-authors [20]), we are concerned primarily with mid-course ∆V requirements: the fuel costs of
the portion of the trajectory following departure from a low-altitude Earth parking orbit.

To give the reader a sense of the fuel costs associated with mid-course maneuvers, it is helpful to consider
the fuel requirements of a Hohmann transfer trajectory from the Earth to the Moon. A Hohmann transfer
is a classic patched-conic manuever by which a spacecraft begins an initial circular orbit of radius r1 about
a given body and transfers to a final circular orbit of radius r2 about the body by traversing a semiellipse
with periapsis distance r1 and apoapsis distance r2. An Earth-to-Moon trajectory which utilizes a Hohmann
transfer to transit from a circular 200-km altitude parking orbit about Earth to a larger circular orbit about
Earth with radius matching that of the Moon’s orbital radius requires roughly an 800 m/s velocity change
upon arrival at the outer orbit in order to match the speed of the Moon [21].
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Figure 4: (a) Unstable manifold (red) of an L2 periodic orbit in the Sun-Earth-spacecraft three-body sytem,
superposed with the stable manifold (green) of an L2 periodic orbit in the Earth-Moon-spacecraft system.
Coordinates are given with respect to a barycentric frame which rotates at a rate such that the Sun and
Earth remain fixed on the x-axis. Units are scaled such that the Sun-Earth distance and the angular velocity
of the rotating frame are both equal to unity. The central black disc denotes the Earth, while the thin black
circle traces the Moon’s orbit. (b) Intersection of the invariant manifold tubes depicted in (a) with the plane
x = 1− µE , where µE = mEarth/(mSun + mEarth).

These mid-course fuel costs can be slashed if we employ the theory of invariant manifolds in the CR3BP
developed in Section 2. In particular, we treat the problem as a mosaic of the three-body problems: initially,
the spacecraft departs Earth along a path that is well-approximated as a motion in the Sun-Earth-spacecraft
CR3BP. At some point, which refer to as the patch point, lunar effects intervene and we treat the spacecraft’s
path as a motion in the Earth-Moon-spacecraft CR3BP. Using this patched trajectory as an initial guess, we
invoke DMOC to optimize fuel costs and obtain a trajectory fully integrated in a Sun-Earth-Moon-spacecraft
four-body model. For details on the four-body model used in this report, the reader is referred to the text
by Koon and co-authors [22].

Two invariant manifolds play a special role in the “Shoot the Moon” problem: the unstable manifolds of
periodic orbits about the L2 Lagrange point in the Sun-Earth-spacecraft three-body system, and the stable
manifolds of periodic orbits about the L2 Lagrange point in the Earth-Moon-spacecraft three-body system.
Following the lead of Koon et al. [20], we aim to design an Earth-to-Moon trajectory (see Fig. 5) which
traces the following route: (1) Depart Earth along a path destined to nearly wind onto a Sun-Earth L2

periodic orbit, (2) “bounce” off of the Sun-Earth L2 equilibrium region along a path which hugs the unstable
manifold of that Sun-Earth L2 periodic orbit, and (3) enter the stable manifold tube of an Earth-Moon
L2 periodic orbit and travel to the Moon. Entrance into the stable manifold tube of a lunar L2 periodic
orbit ensures that the spacecraft can achieve ballistic capture at the moon. The only ∆V requirement for
this trajectory (aside from initial launch costs) is that associated with the transfer from the exterior of the
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Figure 5: A patched Earth-to-Moon trajectory juxtaposed with the Sun-Earth (red) and Earth-Moon (green)
invariant manifolds, in Sun-Earth rotating coordinates. The central black disc denotes the Earth, while the
thin black circle traces the Moon’s orbit. A ∆V of 163 m/s is required at the patch point.

Sun-Earth unstable manifold to the interior of the Earth-Moon stable manifold at the patch point.
Fig. 4 displays the unstable manifold of an L2 periodic orbit in the Sun-Earth-spacecraft three-body

system, superposed with the stable manifold of an L2 periodic orbit in the Earth-Moon-spacecraft three-
body system, all in normalized Sun-Earth rotating coordinates. Notice that in Fig. 4(b), the Sun-Earth
and Earth-Moon manifolds intersect. This serendipitous intersection (due in part to a careful choice of an
initial phase for the Moon) makes possible the construction of a low-∆V trajectory from the Earth to the
Moon as follows: Choose a point in the (y, ẏ) plane of Fig. 4(b) in the interior of the lobe enclosed by
the Earth-Moon stable manifold but just outside the Sun-Earth unstable manifold. With the appropriate
x-velocity, this point will follow the interior of the Earth-Moon stable manifold tube and achieve ballistic
capture at the Moon when advected forward in time. With a slightly different x-velocity, this point can be
advected backward in time toward the Sun-Earth L2 equilibrium region. Since it is outside the Sun-Earth
unstable manifold tube, it must “bounce” off the equilibrium region and hug the Sun-Earth stable manifold
(not shown in the figure) back toward Earth. (The choice of a patch point lying very close to but just outside
of the Sun-Earth unstable manifold ensures flexibility; a small change in inital state can lead to large changes
in the final position of the spacecraft when advected backward in time from such a location, thus making the
Earth-targeting portion of the design problem a feasible task. For more information, the reader is referred
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Figure 6: Locally optimal Earth-to-Moon trajectory (solid blue line) juxtaposed with the patched initial
guess (dashed blue line) of Fig. 5. The central black disc denotes the Earth, while the thin black circle traces
the Moon’s orbit. A ∆V of 17 m/s is required for the optimal trajectory, a significant improvement over the
patched trajectory’s ∆V of 163 m/s.

to the discussion of “twisting” of orbits given by Koon and co-authors [22].)
In Fig. 5, we display a patched Earth-to-Moon trajectory consisting of two pieces as described above.

A ∆V of 163 m/s is required at the patch point, a value on the same order of magnitude as that given by
Koon and co-authors (34 m/s) for a similar trajectory [20].

The trajectory just described is not optimal. Intuitively, a more fuel-efficient trajectory can be constructed
by fine-tuning the control effort; the patched trajectory utilizes a single impulsive thrust at a more or
less arbitrary position along its path. To this end, we apply DMOC to the problem of minimizing ∆V
requirements, using the patched trajectory as an initial guess. To guarantee ballistic capture at the Moon,
we impose the following boundary conditions on the spacecraft’s trajectory: a fixed initial position and
velocity which is destined to make a close approach of the Earth under the backward time flow, and a
flexible final position and velocity which is required to satisfy the family of constraints given below.

RM +
200
LSE

≤
√

(x(tf )− xM (tf ))2 + (y(tf )− yM (tf ))2 ≤ RM +
2000
LSE

(15)
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ẋ(tf )− ẋM (tf ) =
−√µM (y(tf )− yM (tf ))

(x(tf )− xM (tf ))2 + (y(tf )− yM (tf ))2)3/2
(16)

ẏ(tf )− ẏM (tf ) =
√

µM (x(tf )− xM (tf ))
(x(tf )− xM (tf ))2 + (y(tf )− yM (tf ))2)3/2

(17)

Here (x, y, ẋ, ẏ) and (xM , yM , ẋM , ẏM ) denote coordinates of the spacecraft and Moon, respectively, in a
normalized Sun-Earth rotating coordinate system, tf denotes the final time at the endpoint of the spacecraft’s
trajectory, RM and µM denote the radius and mass, respectively, of the Moon in normalized units, and LSE

is a conversion factor corresponding to the Sun-Earth distance in kilometers. Physically, constraints (15-17)
correspond to the requirement that the spacecraft be in a 200- to 2000-km altitude circular orbit about the
moon at time tf .

The optimized trajectory generated through application of the DMOC algorithm, using the patched
trajectory of Fig. 5 as an initial guess, is displayed in Fig. 6. The total ∆V requirement for this trajectory
(excluding initial launch costs) is 17 m/s. This is roughly a tenfold improvement in the 163 m/s ∆V
requirement for the patched trajectory of Fig. 5. Relative to the 800 m/s burn required during the second
thrust of an Earth-to-Moon Hohmann transfer, the trajectory of Fig. 6 is considerably more fuel-efficient.
The fuel savings, of course, come at a cost: while a Hohmann transfer takes just 5 days to execute, the
trajectory in Fig. 6 has a flight time of roughly 6 months. Nevertheless, trajectories like that of Fig. 6 are
well-suited for unmanned missions, where short flight times may safely be sacrificed for fuel savings.

3.2 Resonant Gravity Assists and the Titan Mission

The low-fuel “Shoot the Moon” trajectory of Fig. 6 was made possible by a fortuitous intersection of the
invariant manifolds of the Sun-Earth-spacecraft and Earth-Moon-spacecraft three-body systems. In a gen-
eral celestial system, the distances between primary bodies and their relative masses may not permit such
fortunate circumstances. In particular, it has been observed numerically that the invariant manifolds of
the Saturn-Titan-spacecraft system do not pass near the invariant manifolds of the Lyapunov orbits associ-
ated with Saturn’s other moons, a situtation that can be partly attributed to the small masses of Saturn’s
non-Titanian moons.

To overcome this barrier, it is possible to utilize repeated gravitational assists to iteratively modify the
osculating orbital elements of a spacecraft in orbit about Saturn and steer it toward sequential flybys at
multiple moons. Such techniques have formerly been applied to the design of a trajectory through the
Jovian moon system which requires very low amounts of fuel [23]. Dubbed a “Multi-Moon Orbiter,” the
trajectory begins in a Jovian orbit with semimajor axis larger than Jupiter’s outermost major moon and
performs resonant gravity assists with the major moons in sequence to gradually reduce the orbit’s semimajor
axis and visit multiple moons en route.

To facilitate the design problem, Ross and Scheeres [24] derive a map which approximates the change in
orbital elements over one period of a particle in orbit in the exterior region of the circular restricted three-
body problem with a small mass parameter µ. Given a particle in orbit with Jacobi constant CJ = −2E,
instantaneous Keplerian energy K = −1/(2a) (where a denotes instantaneous semimajor axis), and argument
of periapsis ω with respect to the rotating frame, the map approximates the orbit’s change in Keplerian energy
and argument of periapsis between successive arrivals at periapsis as(

ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)−3/2 mod 2π

Kn + µf(ωn)

)
, (18)

where f is the so-called energy kick function [24], a function depending parametrically on CJ and K which
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Figure 7: (a) Osculating orbital elements ω and a in the CR3BP, viewed from an inertial frame. ω is
the argument of periapsis of m3’s near-elliptical orbit with respect to the m1-m2 barycenter, and a is the
instantaneous semimajor axis of m3’s orbit. In practice, a is computed as a = −1/(2K), where K is the
instantaneous Keplerian energy of m3: K = 1

2 ((ẋ−y)2 +(ẏ +x)2)−1/
√

x2 + y2. (b) Plot of the energy kick
function f(ω) for a fixed value of the Jacobi constant CJ and Keplerian energy K. Notice that for values
of ω just above zero, f takes on large negative values. Physically, this says that the Keplerian energy of a
spacecraft which makes a periapsis passage just ahead of m2 in the exterior region of the CR3BP receives a
large negative kick, leading to a decrease in the semimajor axis a of the spacecraft’s orbit about the m1-m2

barycenter.

can be computed via numerical quadrature. A plot of the kick function f , together with a diagram of the
orbital elements just described, is given in Fig. 7.

A plot of successive iterates of the Keplerian map for the Saturn-Titan system is given in Fig. 8. The
image was generated by seeding a region of the (ω, K) cylinder with a 10 × 10 grid of points with Jacobi
constant CJ = 3.014 and plotting their locations after 250 iterates of the map (18), where the parametric
dependence of f on K was eliminated by fixing a reference Keplerian energy K̄ = −1/(2ā) (ā = 1.3), an
approximation advocated by Ross and Scheeres [24]. Included in Fig. 8(a) is a plot of the intersection of
the stable manifold of an L2 periodic orbit with the surface of section. The curve encloses a lobe of capture
trajectories: sets of trajectories which, upon the next iterate of the Poincaré map, enter the Titan region of
position space.

Ideally, we would like to find orbits which migrate from the upper portion of Fig. 8(a) to the lower
portion and enter the green stable manifold tube. Such orbits, when plotted in position space, correspond
to trajectories which start with a large semimajor axis, decrease in semimajor axis via the use of resonant
gravity assists, and enter the stable manifold tube of a Saturn-Titan L2 periodic orbit, a natural pathway
leading to capture at Titan or entrance into the Saturn-Titan interior region.

To design such a trajectory, we implement an algorithm similar to that outlined by Grover and Ross [25]
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Figure 8: (a) Poincare section taken at periapsis for orbits in the exterior region of the Saturn-Titan system
(µ = 2.366× 10−4), generated using the discrete Keplerian map (18). Axes are the instantaenous semimajor
axis a = −1/(2K) and argument of periapsis ω for the particle’s orbit at the moment of periapsis. The green
curve in the lower right-hand corner corresponds to the intersection of the stable manifold of an L2 periodic
orbit with the surface of section. The curve encloses a lobe of capture trajectories: sets of trajectories
which, upon the next iterate of the Poincaré map, enter the Titan region of position space. (b) Example
of a resonance-hopping trajectory in the Saturn-Titan system which quickly decreases its semimajor axis
after several revolutions. The square and diamond denote the initial and final points, respectively, along the
sequence of iterates marked in blue.

in their studies of Jovian Multi-Moon Orbiter design. Starting from an orbit with semimajor axis a > 1 and
Jacobi constant CJ < −2E(L2) in the exterior region of the Saturn-Titan CR3BP position space, we advect
the orbit forward in time until a periapsis passage is made whose argument is within a small user-defined
interval containing ωmin, the value of the periapsis angle for which the energy kick function f(ω) takes on
its most negative value. Using small impulsive velocity changes at periapsis and apoapsis passages, we refine
the uncontrolled trajectory so that the final iterate has an argument of periapsis exactly equal to ωmin. The
refinement may be carried out through the use of a root solver (to target ωmin) followed by an equality
constrained minimization (to minimize net ∆V ). Starting from the endpoint of this trajectory segment, we
propogate the trajectory forward in time until a periapsis passage is again made near ωmin. We target ωmin

using small ∆V ’s over the current trajectory segment and repeat this procedure, iteratively reducing the
semimajor axis of the spacecraft’s orbit each time a periapsis passage is made at ωmin. Once an iterate lands
near the stable manifold tube of the Saturn-Titan L2 Lyapunov orbit with energy −1/(2CJ), we target the
interior of the stable manifold tube using small ∆V ’s, thereby permitting entrance into the interior region of
position space. An identical procedure may then be used in the interior region of position space to repeatedly
target minima of the energy kick function and iteratively reduce the semimajor axis of the spacecraft’s orbit.

Fig. 9 displays a trajectory in the Saturn-Titan-spacecraft three-body problem generated using the algo-
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Figure 9: (a) Trajectory in the Saturn-Titan CR3BP which utilizes resonant gravity assists with Titan in
order to iteratively reduce the orbit’s semimajor axis. Over the course of its 23-month flight, the trajectory
requires a surprisingly small total ∆V : a mere 15 m/s. The central black disc denotes Saturn, and the thin
black circle traces Titan’s orbit. (b) The same trajectory, plotted in a rotating frame with Saturn and Titan
fixed on the x-axis.

rithm described above. The trajectory begins in a near-elliptical orbit about the Saturn-Titan barycenter
with a semimajor axis of 1.70 Saturn-Titan distances, uses small ∆V ’s to take maximal advantage of repeated
resonant gravity assists with Titan, and reduces the size of its orbit to one with a final semimajor axis of
0.74 Saturn-Titan distances. Over the course of its 23-month flight, the trajectory requires a surprisingly
small total ∆V : a mere 15 m/s. As a rough comparison, a Hohmann transfer between circular Saturnian
orbits with radii 1.70 and 0.74 Saturn-Titan distances requires a total ∆V of more than 2100 m/s (but takes
only 11 days to traverse).

It is not difficult to see that the trajectory of Fig. 9 could be extended to achieve a further reduction
in semimajor axis and allow for visitation of Saturn’s inner moons. Indeed, the last periapsis passage of
the trajectory in Fig. 9 lies relatively close to the orbital path of Rhea, Saturn’s second largest moon. It
is important to note, however, that reproducing a Multi-Moon Orbiter trajectory like that designed for the
Jovian moon system by Ross and co-authors [23] is hindered by the natural architecture of the Saturnian
moon system. Unlike the Jovian moon system, where the major moons Callisto, Ganymede, and Europa
have Jupiter-Moon-spacecraft CR3BP mass parameters µ on the order of 10−4, the moons of Saturn other
than Titan all have mass parameters µ less than 5 × 10−6. As the energy kick function f in the Keplerian
map (18) is multiplied by a factor of µ, it follows that the maximum feasible reduction in Keplerian energy
accompanying a resonant gravity assist with one of Saturn’s non-Titanian moons is drastically smaller than
that accompanying a gravitational assist in the Jovian moon system.
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4 Conclusions and Further Study

This report has demonstrated the manner in which invariant manifold theory from the three-body problem,
together with a discrete-mechanics-based optimal control algorithm, may be applied to celestial trajectory
design problems. Specifically, we have exploited invariant manifolds in the Sun-Earth-spacecraft and Earth-
Moon-spacecraft three-body systems to produce a fuel-efficient trajectory from the Earth to the Moon, and
have expanded upon the work of Koon and co-authors [20] by employing the DMOC algorithm to minimize
this trajectory’s total fuel usage. We have further applied CR3BP invariant manifold theory, together with
the use of resonant gravity assists, to design a fuel-efficient Saturnian moon tour analogous to the Jovian
Multi-Moon Orbiter designed by Ross and co-authors [23].

To extend the Saturnian moon tour of Fig. 9 toward visitation of Saturn’s inner moons is an obvious
follow-up to this study. It would also be of interest to apply DMOC to this trajectory in an effort to reduce
fuel requirements; the trajectory plotted in Fig. 9 has been generated using a technique akin to multiple
shooting.

A comparison of the methods described in this paper with traditional trajectory design techniques is
worth investigation. In particular, how do the patched three-body motions like those of Fig. 6 compare
with trajectories generated from a patched conic approach in terms of ∆V costs and flight times? How does
DMOC compare with standard trajectory optimization techniques like collocation and multiple shooting?
Also, what is the connection between the resonant gravity assists of Section 3.2, which have been developed
for low-energy regimes in the three-body problem, and standard gravity assist maneuvers that have been
developed for higher-energy regimes using patched conic approximations?

Finally, it would be beneficial to refine the trajectories presented in this report using higher-fidelity
models of the relevant celestial systems. The techniques that have been showcased in Sections 2 and 3
provide a toolbox for low-fuel trajectory design at the foundational level; incorporating these maneuvers
into full-fledged space mission trajectories using high-fidelity ephemerides marks the next major step toward
putting these ideas into practice and realizing the ever-closer dream of fuel-efficient space travel.
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