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Introduction

 Objective: Design a low energy space 
trajectory
 Use Invariant Manifold techniques to determine 

initial trajectory
 Apply DMOC to generate an optimal solution

 “Shoot the Moon”
 Test method by designing trajectory from Earth 

to Moon
 Split problem into two coupled planar circular restricted 

3-body systems and patch them together
 Sun - Earth - Spacecraft (SE)
 Earth - Moon - Spacecraft (EM)

 Based on PhD thesis of Shane Ross and “Shoot 
the Moon” paper by Koon, Lo, Marsden, and Ross



DMOC 
Overview

 DMOC is based on a direct discretization of the 
Lagrange-d’Alembert principle for a dynamical system
 Produces the forced discrete Euler-Lagrange 

equations
 Serve as optimization constraints given a cost 

function
 Need good initial guess that obeys dynamics to work 

successfully

Junge, O., Marsden, J.E., and Ober-
Blöbaum. “Discrete Mechanics and 
Optimal Control.” 



DMOC 
Motivating Example

 Orbit Problem
 Goal: Optimally move a spacecraft from circular orbit r = 5 

to r = 10 with 2 revolutions around the earth.
 Minimize the control effort

 Lagrangian

 Force

 Cost function€ 
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1
2

m ˙ r 2 + r2 ˙ ϕ 2( ) +
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∫ Junge, O., Marsden, J.E., and Ober-

Blöbaum. “Discrete Mechanics and 
Optimal Control.” 



DMOC

Optimal Trajectory



DMOC 
Motivating Example

 What if the desired trajectory looks like this:

 DMOC will need an excellent initial guess

Earth

Moon’s Orbit



DMOC + Invariant Manifolds

 Invariant Manifold method generates initial condition (patch point)
 Integrate patch point in Bicircular 4 body model for initial trajectory
 Apply initial trajectory to DMOC using same model
 What should be minimized?

 Depends on payload
 If people - minimize time or distance
 If supplies/robotics - minimize fuel

 Constraints 
 Euler-Lagrange equations
 Initial position and momentum
 Final position and momentum

 What do we expect?
 Perhaps DMOC will generate trajectory with gradual ΔV instead of 

concentrated ΔV at patch point
 Shorter flight time or distance



Invariant Manifolds
Basic Idea

 Stable and unstable manifolds emanate from 
the periodic orbits of Lagrange points of the 
PCR3BP

 Manifold tubes connect regions of space 
 Spacecraft may travel from one region to another 

through tubes

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 121.



Invariant Manifolds
Details

 Use rotating coordinate system centered on 
barycenter of m1 and m2.  

 Normalize system using mass parameter

 Neglect spacecraft mass
 PCR3BP equations

€ 

µ =
m2

m1 + m2

  where m1 > m2

€ 

˙ ̇ x − 2 ˙ y =Ωx

˙ ̇ y + 2 ˙ x =Ωy

€ 

Ω =
x 2 + y 2

2
+
1−µ
r1

+
µ
r2

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 8.



Invariant Manifolds
Details

€ 

U x,y( ) = −
1
2

µ1r1
2 + µ2r2

2( ) − µ1

r1
−

µ2

r2

  

µ1 =1−µ,    µ2 = µ € 

E x, y, ˙ x , ˙ y ( ) =
1
2

˙ x 2 + ˙ y 2( ) + U x,y( )

Hill’s Regions

Ross, S.D., “Cylindrical Manifolds and Tube Dynamics in the Restricted 
Three-Body Problem” (PhD Thesis, California Institute of Technology, 
2004), pp. 14.

 Energy Integral

 Energy divides the phase space 
into regions
 The energy restricts the motion 

of a spacecraft



Invariant Manifolds
“Shoot the Moon”

 Locate L2 Lagrange point for the SE and EM systems  
 Compute periodic orbit and ‘grow’ manifolds

Sun-Earth Manifolds Earth-Moon Stable Manifold

Moon

Earth



Invariant Manifolds
“Shoot the Moon”

 Transform EM manifold into SE rotating coordinates and 
plot manifolds together



Invariant Manifolds
“Shoot the Moon”

 Compute Poincaré Sections and select ‘patch’ point
 Select point just outside Sun-Earth manifold and inside 

Earth-Moon manifold 



Invariant Manifolds
“Shoot the Moon”

 Use selected point as initial condition
 Integrate forwards on Earth-Moon stable manifold
 Integrate backwards on Sun-Earth unstable manifold



Invariant Manifolds
“Shoot the Moon”

 Capture at Moon occurs naturally
EM Trajectory in EM Rotating Coordinates



Bicircular Model

 M1 and M2 rotate in 
circular motion about 
their barycenter

 M0 and M1-M2 
barycenter rotate in 
circular motion about 
their common center 
of mass

 Create similar trajectory using the Bicircular Model of 
the four body problem (BCM4)



Bicircular Model

 Sun Earth Rotating system:

€ 

˙ x = u
˙ y = v

˙ u = x + 2v −
µE x − xE( )

x − xE( )2
+ y 2( )

3
2
−

µS x − xS( )
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µ =
ME

ME + MS

= 3.0035 ×10−6

µS =1−µ            
µE = −µ

µM = 3.734 ×10−8

xS = −µ            
xE =1−µ

€ 

aM = 2.573×10−3

ωM =12.369
θM =ωM t + θM 0

xM = aM cos θM( )
yM = aM sin θM( )

www.esm.vt.edu/~sdross/books



Bicircular Model

 Trajectory 
 Start at 800 km 

circular Earth orbit
 ΔV =175.8 m/s

Initial Guess: Trajectory

Initial Guess: Control Force



Trajectory Sensitivity

ΔV = 207 m/s ΔV = 196 m/s ΔV = 193 m/s

ΔV = 192.8 m/s ΔV = 191 m/s ΔV = 188 m/s



DMOC+IM

 Lagrangian is derived from BCM4 in SE rotating 
coordinates

 DMOC equations

 Minimize control effort

 Control Force

€ 

L =
1
2

˙ x 2 + ˙ y 2( ) +
1
2

x 2 + y 2( ) + x˙ y − y˙ x + µE
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                                           q0 = q0 qN = q1

                D2L q0, ˙ q 0( ) + D1Ld q0,q1( ) + f0
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T
∫



DMOC Results

Trajectory Control Force

IG 175.8273
DMOC 1 2.1374
DMOC 2 0.6105
DMOC 3 0.2342
DMOC 4 0.2331

DeltaV (m/s)



DMOC Results

Initial Guess DMOC
case 1 175.8273 0.2331
case 2 178.5763 0.4452
case 3 172.7951 0.0672
case 4 171.3516 0.0902
case 5 177.8498 0.4386

Delta V (m/s)

Initial Guess DMOC Result



Comparison

 How does this compare with a Hohmann Transfer?
 Case 1: trajectory begins in ~800 km altitude circular 

orbit.
 Starting velocity of trajectory = 6.24 km/s 
 circular velocity of parking orbit = 7.4 km/s

 Initial ΔV = 1.17 km/s
 ΔV = 0.2331 m/s for trajectory portion
 Total ΔV = 1170.23 m/s 

 Hohmann Transfer from 800 km circular orbit to Moon
 Total ΔV = 3812.6 m/s



DMOC + Invariant Manifolds
Future Work

 Optimize for time and control
 Enforce momentum boundary 

conditions to ensure capture 
 Solve same problem using JPL’s 

MYSTIC
  compare with DMOC+IM method

 Use method to generate trajectory to 
Titan
 Also include fly-by of Enceladus

 May require additional maneuvers
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