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Abstract - For navigation on distant planets/moons, control from the Earth is too slow for
practical purposes. Titan, Saturn’s moon, presents one such example. Thus, autonomous
navigation is preferred. An Earth based demonstration flight will be held in the Mojave Desert
to test autonomous navigation. The aim of this project is to investigate the balloon's optimal
flight path (minimizing fuel consumption by exploiting wind fields) ahead of time by assuming
a perfect wind model, and then to explore ways of optimally modifying this path during the
flight itself. The DMOC (Discrete Mechanics and Optimal Control) algorithm is used as a tool
to generate the optimal path to be followed, which minimizes a cost function (the control force
required from the vehicle was minimized). The code, using DMOC, is setup to take in a start
point, final point and initial velocity and output a trajectory that minimizes aerobot control
force/fuel consumption by exploiting the wind fields to help the aerobot reach its destination.
The wind fields are generated using the Weather Research and Forecasting (WRF) Model.
Future work will involve perfecting this method for autonomous navigation (to minimize fuel
consumption), updating the aerobot model to include drag forces experienced (currently not
implemented) and possibly implementing a method that uses pre-computed primitives (using
the DMOC algorithm) to reduce on-board computation time. This would have implications not
only for the Titan mission, but also for future navigation missions and possibly Earth based
navigations as well.

Introduction

In this paper, a method for autonomous navigation, exploiting local wind fields to minimize fuel
expenditure, is proposed for Montgolfier balloons/aerobots that are used for navigation on other
planets/moons. It is hoped that the methods proposed can someday be utilized on Titan, Saturn's
largest moon.

The Cassini-Huygens mission has shown Saturn’s moon, Titan, as an exotic world, unlike any other,
but bearing some uncanny resemblances to the Earth[1]. The Cassini orbiter radar has revealed vast
expanses of equatorial sand dunes and high latitude seas believed to contain liquid methane and
ethane[2][3]. The view at one place obtained by the Huygens probe has shown a complex valley
drainage network believed to be carved by flash floods of liquid hydrocarbons. This is one of the
reasons why Titan is of such great interest amongst scientists[4].

NASA has, thus, recently announced its intention of going back to Titan in collaboration with
European and Japanese Space agencies. One possible mode of exploration that can be used on
Titan is a lighter —than-air vehicle that could operate for years in Titan’s cold dense atmosphere and
descend frequently to the surface for close up observations and sampling. A hot air (Montgolfiere)



balloon (with vertical control provided by heating air to produce buoyancy) is one option[5]. Another
option is an aerobot (with control along the x and y as well as z axis)[6][7].

To navigate on Titan, autonomous control will be required. For this purpose, an Earth based
demonstration flight has been proposed in the Mojave Desert in the summer of 2009, where path
prediction for the aerobot/balloon to be used will be provided using knowledge of local wind fields
only[8]. The idea of this test flight is to demonstrate that a balloon can autonomously navigate in the
Earth's atmosphere (where we are familiar with the wind patterns) and thus hopefully show that it
might be possible to do the same on Titan (for which we currently possess very limited knowledge
about atmospheric conditions).

In order to be able to generate an optimal trajectory to be followed, an initial point (the starting point
of the aerobot/balloon), a final point (the desired final destination of the aerobot/balloon) and an
initial velocity are provided. A final velocity can also be incorporated, if desired. Using this and
knowledge of local wind fields, an optimal trajectory needs to be calculated that minimizes the
control effort required (and thus, indirectly minimizing the fuel consumption of the aerobot/balloon).
The trajectory is discretized, i.e. points along the optimal trajectory are found and the resulting
trajectory is pieced together using the points generated (during test runs, 50 points were used for
trajectory generation). To generate the optimal path, the DMOC (Discrete Mechanics and Optimal
Control) algorithm is used (see Methods section). DMOC gives the optimal points along the
trajectory, along with the velocity and control forces at each of these points and the time between
them. In order to use the DMOC algorithm, an initial guess of the trajectory needs to be provided.
The constraint equations need to be set up as well (to ensure that the resulting trajectory obeys the
laws of motion). An objective function needs to be provided (that shall be minimized). The objective
function minimized is the fuel expenditure/control force needed from the balloon. These parameters
are then fed into fmincon, a MATLAB minimization routine, that finds a local minimum for the
given objective function and outputs the optimal parameters.

The wind fields used as input are obtained from the Weather Research and Forecasting (WRF) Model
(see Methods section). The WRF Model outputs wind fields every hour on constant sigma levels
(where sigma pressure = surface pressure) on an irregular, curvilinear grid. The WRF output is then
interpolated onto constant altitude levels and a regular Cartesian grid, which is much more
convenient for subsequent calculations during which WRF wind data are interpolated both spatially
and temporally to provide predicted/sample wind fields at the locations and times required. Since the
test flight will, tentatively, be held in the Mojave Desert, the wind fields used are taken from a 5 day
simulation of the Death Valley region in the Mojave Desert, starting at 12 pm on July 5, 2005.

Results using synthetic wind fields

The DMOC algorithm was first tested using synthetic wind fields for which the optimal trajectory
was either known or easy to intuit (see methods section). Initially, to test whether the DMOC
algorithm had been implemented correctly, the code was run using synthetic wind fields, where the
correct solution is known. The initial guess for the optimal trajectory provided was a straight line



trajectory. Only vertical control was provided to the balloon. The solution in such cases was as
expected, showing that the DMOC algorithm was correctly implemented.

As an example, without any wind at all points, the balloon was able to move only in the vertical
direction, which is correct since it has control force in the vertical direction only. Another, slightly
more complicated example used for testing the implementation of DMOC involved considering wind
fields in the x-direction only. The winds used were (0.2z,0,0), i.e. winds are blowing in the x-
direction only, which depend on the z-coordinate of that position (winds are constant in the x-y
plane). An initial position of (4,0,2), a final position of (9,0,3) and an an initial velocity of (0,0,0) for
the balloon were input. The number of discretization points along the trajectory given was 50. With
an initial guess of 0.16 for the time step ‘h’, the solution for the optimal trajectory and the optimal
control forces needed from the balloon are shown in Figure 1 and 2 respectively. The optimal ‘h’
output in this case was 0.207.
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Figure 1: Balloon trajectory Figure 2: Optimal control forces in the z direction

However, with everything else remaining the same, except for the initial guess of the time step ‘h’,
the results produced were quite different. In this case, the initial guess provided for ‘h’ was 1.4. The
results of the optimization are shown in Figure 3 (trajectory) and Figure 4 (control forces). The
optimal ‘h’ output was now 8.75 — considerably higher than the previous output of ‘h’-0.207!



Balocn ey

w10’ Optimal Control Effort

e

Z Axis (k)
Ny
Control {(km/hr)
ra

- 1 L 1 Il
¥ s i ’ ) 0 0 00 180 200 200 300 3/00 400 450
ks i Time {hr]

4 !

Figure 3: Balloon trajectory Figure 4: Optimal control forces in the z direction

The sum of forces(which is the function being minimized) is much smaller in the first case as
opposed to the second. Thus, the first case is a more optimal solution as compared to the second one.

The difference in solutions occurs due to the fact that fmincon finds a local minimum to output the
solution, and this local minimum is found around the initial guess provided. These experiments
demonstrate the importance of the initial guess.

Results using real wind fields

When using real wind fields the importance of the initial guess became even more apparent. With
control in the z-direction only, DMOC largely found it hard to converge and reach an optimal
solution with a straight line initial guess. With control along all three axes, the solution output was
almost always a straight line, similar to the initial guess, and thus required large horizontal control
forces.

To test the performance of the algorithm, a Lagrangian advection scheme (the 'Newman' code — see
description in methods section) was used to find the trajectory of a passive tracer being blown about
by the WRF wind field for five hours, representing a frictionless balloon with no control forces. This
trajectory is shown in Figure 5. By choosing the end point as the desired end point of a DMOC run
begun at the start point, it is known that the optimal result should be zero control forces at all times,
with the optimal trajectory matching that produced by the Newman code (to within numerical
differences between the solvers used in the two schemes). However, the results from DMOC with a
straight line initial guess did not reflect such a solution. The solution output in this case was almost
a straight line as in our other test cases. Considerable control forces were required according to the
solution output by DMOC. To correct this, the initial guess was changed. The initial guess now given
was the passive path that would be followed by the balloon without applying any control force. With



this initial guess, DMOC converged to a solution which required no control forces and with a
trajectory very similar to the one output by the Newman code (see Figure 6).
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Figure 6: Optimal trajectory produced using the DMOC algorithm

As was found when using synthetic wind fields (see methods section) the results are thus very
sensitive to the initial guess. But, using the Newman code to provide this guess would be useful only
in cases where no/mild control forces are required and when the end point reached passively by the



balloon is sufficiently close to the desired end point. For most other situations, this method of initial
guessing, by itself, might not be too useful.

Conclusions

Providing a good initial guess is thus the major problem in successfully using DMOC to find the
optimal trajectory of a balloon or aerobot. An initial guess that is close to the actual solution is
needed in order for DMOC to be able to converge to a sufficiently optimal solution. Along with a
good method to generate the initial guess of the trajectory, a reliable method to generate an initial
guess of the time step ‘h’ is also needed, since different guesses of ‘h’ can lead to drastically different
solutions. Using Lagrangian advection code, which provides the trajectory of a frictionless, passive
balloon, may provide a means of improving the initial guess by accounting for transport by the wind
field. However, further work is required to adapt this to cases where the destination point is very far
from that reached by a passive balloon (i.e., where considerable control forces must be required).
With the development of suitable methods for initial guessing, this method using the DMOC
algorithm seems to be promising for autonomous path prediction.

Future Work

To overcome problems arising due to a poor initial guess, an approach combining the capabilities of
the Newman code and the DMOC algorithm can be used[10]. As mentioned earlier, Newman code
has the ability to place passive tracers at user specified points and track the path followed by them in
the wind fields input. This can be used to generate an initial guess for DMOC.

The time step ‘h’ can be fixed at about 5 — 10 minutes (or some other practical time step can be
chosen). First, in MATLARB, the point (say, point A) reached passively by the balloon in ‘h’ time is
noted. Now, a multitude of about 25 - 50 tracers can be started at different altitudes, on either side of
point A (a total of 50 — 100 tracers), representing vertical control. These will represent the various
points reached if quantized control forces (in the z direction) were applied by the balloon at the start
point.

Using Newman code, it is seen where these tracers land up after a long period of time and which
tracer got closest to the final destination. The start point of that particular tracer is then used as the
second point in the trajectory. This process is repeated to build up the trajectory point by point, until
the final destination (or a nearby region around it) is reached. This is how the initial guess can be
setup. This would be much more accurate than a straight line initial guess and much closer to the
actual solution. This would also avoid the need to provide an initial guess for ‘h’.

Once the current model is successful with the DMOC algorithm, the model including drag forces can
be incorporated to have a more accurate model of the balloon. If the balloon’s specifications (such as
its drag constant, terminal velocity, maximum control force that can be exerted, etc.) are known, they
can be implemented as well. In the coming weeks, I shall work in these directions in an attempt to
successfully predict optimal trajectories using the DMOC algorithm.



Methods
DMOC

As mentioned before, the DMOC algorithm is implemented using MATLAB’s fmincon function
(which solves for a local minimum around the initial guess)[9]. In the balloon model currently
implemented, the balloon is considered as a point mass. Drag forces have been excluded in the model
being tested with - it can be added once the model is perfected.

Before using fmincon, three things need to be setup —
1) An initial guess for the trajectory
2) The constraint equations
3) An objective function

Initial Guess - For the initial guess, a straight line was provided starting from the given initial point
at the given initial velocity and ending at the given final position. The discretization points for the
initial guess were placed at uniform distances along this straight line. The velocity along each of the
points was calculated using finite differences of the location points, i.e. velocity(k) = (position(k+1)-
position(k))/h, where the velocity at point k is found and h is the time step needed for moving from
one point of the trajectory to the next. As an initial guess for control forces, finite differencing of the
velocity at trajectory points was used. As mentioned earlier, the initial guess needs to be improved.
As an improvement for trajectories requiring minimal control forces and where the end point reached
passively is close to the desired end point, an initial guess that involves the balloon going passively
with the wind can be used. But for most cases, a better initial guess needs to be implemented.

Constraint Equations —

Linear Constraints - The linear constraint equations were setup to ensure that the given
optimized trajectory satisfies the equations of motion. Constraints on the discrete positions (along the
trajectory), velocities and forces were setup. Drag forces were not included in the model used for
testing (A model including drag forces was setup, but hasn’t been robustly tested yet). The
constraints were setup as follows —

- At a point along the trajectory, the balloon velocity (V) was the velocity provided by the
control force (v) plus the wind velocity (uvw), i.e V=v + uvw

- The acceleration provided by the control force (f) is the simple finite differencing of the
velocity provided by the control force (v), i.e. f = Av / Atime

- The control forces in the x and y directions are zero, i.e. control force in only the z direction
was given, i.e. f(x) =f(y) =0



Non Linear Constraints — The total time taken to get from the initial point to the final point
is also optimized by optimizing the time step (‘h”) between two consecutive points on the optimal
trajectory. The constraints setup on the time step are that it must be between 0 and 10 hours(10 was
chosen for practical purposes, since the number of discretization points along the trajectory chosen
was 50, so for medium scale travel distances of about 1000 — 1500 km, with a time step of 10
(hours), the total time taken would be 500 hours. For practical purposes, we wouldn’t want such
distances to be traversed in more than 3 weeks). Later on, practical constraints on the maximum
velocity that the balloon can travel at, the maximum control force that can be applied, etc. can be
incorporated once specifications of the balloon’s abilities are known.

The Objective Function — The objective function is the function that fmincon (the MATLAB
function), shall minimize. While navigating on Titan, the fuel supply is limited. Thus, the primary
objective is to minimize fuel consumption by the balloon. This can be done indirectly by minimizing
the control force that the balloon needs to exert. The least squares method (applied to the control
forces exerted) was used to provide the objective function. The control force is directly minimized in
the first (preliminary) model of the aerobot, whereas in a later version (which can be implemented
once the first model is perfected), the objective function involves the change in the density of gas
inside the balloon (which is actually the source of control force in the z direction).

If the time of travel needs to be minimized, the time step ‘h’ can be minimized in the objective
function. Alternatively, a combination of the time step ‘h’ and the total control forces can be
incorporated into the objective function, depending on the factors most important to minimize.

The Weather Research Forecasting (WRF) Model

The WRF Model was used to generate the wind fields in the desired area (an area around the Mojave
Desert was used for testing) at a desired time (wind fields from July 5, 2005 were used). The WRF
Model is a mesocale numerical weather prediction system designed for operational forecasting and
atmospheric research[11]. It features multiple dynamical cores, a 3-dimensional variational
(3DVAR) data assimilation system, and a software architecture allowing for parallel computation and
system extensibility. WRF is suitable for applications across scales ranging from meters to thousands
of kilometers. The WRF model provides an operational forecasting model that is flexible and
efficient computationally, while offering advances in physics, numerics, and data assimilation[12].

The WRF Model (compiled for real data cases) is run via the WRF Pre-processing System (WPS)
first and then WRF is run.

WPS - This program is used for 1) defining simulation domains; 2) interpolating terrestrial data
(such as terrain, landuse, and soil types) to the simulation domain; and 3) degribbing and
interpolating meteorological data from another model to this simulation domain.

Each of the WPS programs reads parameters from a common namelist file. This namelist file has
separate namelist records for each of the programs and a shared namelist record, which defines



parameters that are used by more than one WPS program. The WPS consists of three independent
programs: geogrid, ungrib, and metgrid[13]

Geogrid

Geogrid defines the simulation domains, and interpolate various terrestrial data sets to the model
grids. The simulation domains are defined using information specified by the user in the “geogrid”
namelist record of the WPS namelist file, namelist.wps. By default, and in addition to computing
latitude and longitudes for every grid point, geogrid will interpolate soil categories, land use
category, terrain height and other parameters to the model grids. The 10’ resolution for the data sets
was used. Variables in the geogrid section of the namelist file primarily define the size and location
of all model domains, and where the static geographical data are found. The output files are written
in netCDF format.

Ungrib

The ungrib program reads GRIB files, "degribs" the data, and writes the data in a simple format,
called the intermediate format. The GRIB files contain time-varying meteorological fields and are
typically from another regional or global model, such as NCEP's NAM or GFS models. The ungrib
section of the namelist file contains two variables, which determine the output format written by
ungrib and the name of the output files.

Metgrid

The metgrid program interpolates horizontally the intermediate-format meteorological data extracted
by the ungrib program onto the simulation domains defined by the geogrid program. The interpolated
metgrid output can then be ingested by the real program (which is run after WPS). The range of dates
that will be interpolated by metgrid are defined in the “share” namelist record of the WPS namelist
file, and date ranges are specified individually in the namelist for each simulation domain. Output
from metgrid is written in the netCDF format. In the metgrid section of the namelist, the path to the
ungribbed files needs to be provided, along with the path for the output files.

Now, after WPS is run, the WRF model is run. The WRF model uses the namelist.input file, in

which the parameters (such as start time, date, end time, date, etc.) must match the namelist file used
for WPS. The WRF model has 2 steps:

real.exe
This program interpolates the met_em* files (generated by metgrid.exe) vertically, creates
boundary and initial condition files and does some consistency checks.

wrf.exe
Generates the model forecast.

Newman Code
Newman is research code for computing FTLE and extracting LCS. The Newman code can be used

for parallel computations of Finite Time Liapunov Exponent (FTLE), LCS (Lagrangian Coherent
Structures) ridge extractions, computations with N dimensions as well as for outputting drifter
trajectories and velocity fields at any given time and position[14].



Newman code was used, in this project, to compute trajectories followed by passive tracers using the
‘Trace Compute’ feature of Newman[15]. The velocity fields were provided in numerical data files
to Newman code to allow it to compute passive trajectories followed by tracers in the wind fields
input.
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