Path Optimization for an Earth-Based Demonstration Flight

Anuj Arora and Daniel Beylkin

Summer Undergraduate Research Fellowship
August 8, 2008

```
ICALIFORNIANINSTITUTEOFONONOLOM
```


The Problem

- The Cassini-Huygens spacecraft mission revealed some incredible observational data on Titan, including the likely existence of high-latitude hydrocarbon oceans and equatorial sand dunes
- NASA intends on going back to Titan, likely using Montgolfier balloons that would be able to operate and gather data on Titan for several years
- While the balloon is on Titan, intervening with the flight-plan on a short time-scale is not possible
- Require autonomous decision-making
- Demonstration balloon flight is planned for the Mojave Desert in 2009
- We would like the balloon to autonomously navigate the desert by exploiting winds to minimize control, time of flight, etc.
- Hopefully methods can be translated to solve a similar problem on Titan

Discrete Mechanics and Optimal Control

- Finds optimal trajectory that satisfies a system's equations of motion
- Implemented as fmincon in Matlab's Optimization Toolbox
- Optimization routine that finds local minimum of a constrained, nonlinear multivariable objective function
- Requires:
- Objective function
- Constraint equations
- Initial guess

DMOC

- We are given the initial position, q_{0}, final position, q_{f}, and initial velocity, v_{0}
- May or may not care about final velocity
- Discrete trajectory with N time nodes between q_{0} and q_{f} such that $(N+1) \cdot h=t_{f}$
- h is constant time step and t_{f} is time of travel
- Want to find $\left\{q_{i}\right\},\left\{v_{i}\right\}$, and $\left\{f_{i}\right\}$ that satisfy constraints and minimize objective function
- q_{i} is generalized position, v_{i} is generalized impulse, and f_{i} is control force
- Choose not to fix t_{f}, so we also want an optimal h

Objective Function

- Depends on the problem
- Currently concerned with minimizing control required for balloon navigation
- Could minimize time of travel or other parameters
- We are choosing to use the l^{2}-norm as the measure of control
- Want to minimize

$$
\sum_{i} f_{i}^{2}
$$

- If we were to choose a more sophisticated model of balloon dynamics, with fuel as an explicit parameter, we can also minimize fuel consumption

Constraint Equations

- Trajectory must obey physical laws (i.e. balloon's equations of motion)
- We use the following simple model of balloon dynamics
- Consider the trajectory $\left\{q_{0}, q_{1}, \ldots, q_{N}, q_{f}\right\}$ - we approximate velocity of balloon as

$$
\frac{q_{i+1}-q_{i}}{h}=v_{i}+W \operatorname{ind}\left(\frac{q_{i+1}+q_{i}}{2}, t_{i+\frac{1}{2}}\right)
$$

where v_{i} are evaluated on a staggered grid at the midpoint between q_{i} and q_{i+1}

- Approximate control force as

$$
\frac{v_{i+1}-v_{i}}{h}=f_{i+1}
$$

where f_{i+1} are evaluated on a staggered grid at the midpoint between v_{i+1} and v_{i}

- Wind field is generated using the Weather Research and Forecasting (WRF) model

Weather Research and Forecasting Model

- Numerical weather prediction system for both research and forecasting applications
- Influence of wind is a significant component of constraint equations
- Balloon demonstration flight planned for the Mojave Desert in 2009
- For our purposes, we ran the model for the Mojave Desert starting July 5, 2005 (around the Death Valley region)

WRF Output

- Plot of the x-direction wind velocity at different sigma levels
- Sigma is the ratio of the pressure at a point in the atmosphere to the pressure of the surface of the Earth beneath it

Modifying WRF Output

- Wind speeds are on a curvilinear grid but we would like them to be on a uniform, rectangular Cartesian grid

Modifying WRF Output

- First, interpolate all necessary data (i.e. wind speed and geopotential height) onto Cartesian grid
- Change of coordinate from longitude and latitude to Cartesian distance

$$
\begin{gathered}
x=\frac{\pi}{180^{\circ}} \cdot r \cdot \phi \cdot \cos \left(\lambda-\lambda_{0}\right) \\
y=\frac{\pi}{180^{\circ}} \cdot r \cdot\left(\phi-\phi_{0}\right)
\end{gathered}
$$

- ϕ is latitude, λ is longitude, and $r=6,378 \cdot 10^{3} \mathrm{~m}$ is the radius of the earth
- $\left(\lambda_{0}, \phi_{0}\right)$ is origin, which in this case is $\left(-116^{\circ} E, 36^{\circ} N\right)$

Modifying WRF Output

- Sigma coordinates complicate calculations
- Must make a change of variable to altitude coordinates
- Use geopotential height divided by Earth's gravity to obtain altitude
- We use interpolation to find wind velocity at altitude of our choice
- Example of x-direction wind velocity on July $6,2: 00 \mathrm{am}$ GMT, at an altitude of 4500 m

Problems

- One major issue with our current model is the lack of drag due to wind
- We would like implement a more sophisticated model of balloon dynamics, but...
- fmincon is a local optimization routine so initial guess is critical
- For first implementation of DMOC, we chose a linear initial guess
- Finite differences was used to compute initial velocity and control force
- Does not necessarily satisfy constraints of the problem

First Example

- $N=50$, initial position is $(4,0,2)$, final position is $(9,0,3)$, no initial velocity, wind is (0.2z, 0, 0)
- Linear initial guess, initial guess for $h=0.16$

- Optimal $h=0.207$

First Example

- Same as before except now initial guess for $h=1.4$

- Optimal $h=8.75$

Second Example

- $N=50$, initial position is $(7,0,2)$, final position is $(10,0,3)$, no initial velocity, wind is $(1,0,0)$
- Linear initial guess

- If wind is $(x, 0,0)$, the optimization routine is unable to find a trajectory that satisfies the constraints although one should exist

Second Example

- Changed the wind less drastically using the same linear initial guess
- We chose winds of $(1+\alpha x, 0,0)$ where $\alpha \in[0.001,1]$
- Optimization succeeded for $\alpha \leq 0.6$
- Used the optimal output from $\alpha=0.5$ as the initial guess for $\alpha=1$
- Optimization succeeded
- Conclusion: need to generate a better initial guess!

Future Goals

- Currently working on implementing DMOC with actual wind fields from WRF
- Will likely use "receding-horizon" to build in time dependence (i.e. assume wind fields are constant over hourly intervals)
- Use Lagrangian Coherent Structures to initiate DMOC
- Inanc, T., S.C. Shadden and J.E. Marsden Optimal trajectory generation in ocean flows, Proc. of 2005 American Control Conference, (2005), 674-679.
\diamond Demonstrated that LCS "provide a good correspondence with optimal trajectories for autonomous underwater gliders in the ocean"
\diamond Asked question: "Can computations of optimal trajectories be sped up by using information of LCS to initialize the optimization code?"
- Use DMOC primitives for real-time computation
- Curse of dimensionality?
- Implement a more sophisticated model of balloon dynamics

