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The Problem

• The Cassini-Huygens spacecraft mission revealed some incredible observational data on
Titan, including the likely existence of high-latitude hydrocarbon oceans and equatorial
sand dunes

• NASA intends on going back to Titan, likely using Montgolfier balloons that would be
able to operate and gather data on Titan for several years

• While the balloon is on Titan, intervening with the flight-plan on a short time-scale is not
possible

◦ Require autonomous decision-making

• Demonstration balloon flight is planned for the Mojave Desert in 2009

◦ We would like the balloon to autonomously navigate the desert by exploiting winds to
minimize control, time of flight, etc.

• Hopefully methods can be translated to solve a similar problem on Titan
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Discrete Mechanics and Optimal Control

• Finds optimal trajectory that satisfies a system’s equations of motion

• Implemented as fmincon in Matlab’s Optimization Toolbox

◦ Optimization routine that finds local minimum of a constrained, nonlinear multivariable
objective function

• Requires:

◦ Objective function
◦ Constraint equations
◦ Initial guess
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DMOC

• We are given the initial position, q0, final position, qf , and initial velocity, v0

◦ May or may not care about final velocity

• Discrete trajectory with N time nodes between q0 and qf such that (N + 1) · h = tf

◦ h is constant time step and tf is time of travel

• Want to find {qi}, {vi}, and {fi} that satisfy constraints and minimize objective function

◦ qi is generalized position, vi is generalized impulse, and fi is control force

• Choose not to fix tf , so we also want an optimal h
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Objective Function

• Depends on the problem

◦ Currently concerned with minimizing control required for balloon navigation
◦ Could minimize time of travel or other parameters

• We are choosing to use the l2-norm as the measure of control

◦ Want to minimize ∑

i

f2
i

• If we were to choose a more sophisticated model of balloon dynamics, with fuel as an
explicit parameter, we can also minimize fuel consumption
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Constraint Equations

• Trajectory must obey physical laws (i.e. balloon’s equations of motion)

• We use the following simple model of balloon dynamics

◦ Consider the trajectory {q0, q1, . . . , qN , qf} - we approximate velocity of balloon as

qi+1 − qi

h
= vi + Wind(

qi+1 + qi

2
, ti+1

2
)

where vi are evaluated on a staggered grid at the midpoint between qi and qi+1

◦ Approximate control force as
vi+1 − vi

h
= fi+1

where fi+1 are evaluated on a staggered grid at the midpoint between vi+1 and vi

• Wind field is generated using the Weather Research and Forecasting (WRF) model
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Weather Research and Forecasting Model

• Numerical weather prediction system for both research and forecasting applications

• Influence of wind is a significant component of constraint equations

• Balloon demonstration flight planned for the Mojave Desert in 2009

• For our purposes, we ran the model for the Mojave Desert starting July 5, 2005 (around
the Death Valley region)
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WRF Output

• Plot of the x-direction wind velocity at different sigma levels

◦ Sigma is the ratio of the pressure at a point in the atmosphere to the pressure of the
surface of the Earth beneath it
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Modifying WRF Output

• Wind speeds are on a curvilinear grid but we would like them to be on a uniform,
rectangular Cartesian grid
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Modifying WRF Output

• First, interpolate all necessary data (i.e. wind speed and geopotential height) onto
Cartesian grid

• Change of coordinate from longitude and latitude to Cartesian distance

x =
π

180◦
· r · φ · cos(λ − λ0)

y =
π

180◦
· r · (φ − φ0)

◦ φ is latitude, λ is longitude, and r = 6, 378 · 103m is the radius of the earth
◦ (λ0, φ0) is origin, which in this case is (−116◦E, 36◦N)
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Modifying WRF Output

• Sigma coordinates complicate calculations

◦ Must make a change of variable to altitude coordinates
◦ Use geopotential height divided by Earth’s gravity to obtain altitude

• We use interpolation to find wind velocity at altitude of our choice

• Example of x-direction wind velocity on July 6, 2:00am GMT, at an altitude of 4500m
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Problems

• One major issue with our current model is the lack of drag due to wind

◦ We would like implement a more sophisticated model of balloon dynamics, but...

• fmincon is a local optimization routine so initial guess is critical

• For first implementation of DMOC, we chose a linear initial guess

◦ Finite differences was used to compute initial velocity and control force
◦ Does not necessarily satisfy constraints of the problem
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First Example

• N = 50, initial position is (4, 0, 2), final position is (9, 0, 3), no initial velocity, wind is
(0.2z, 0, 0)

• Linear initial guess, initial guess for h = 0.16
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• Optimal h = 0.207
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First Example

• Same as before except now initial guess for h = 1.4
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• Optimal h = 8.75
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Second Example

• N = 50, initial position is (7, 0, 2), final position is (10, 0, 3), no initial velocity, wind is
(1, 0, 0)

• Linear initial guess
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• If wind is (x, 0, 0), the optimization routine is unable to find a trajectory that satisfies
the constraints although one should exist
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Second Example

• Changed the wind less drastically using the same linear initial guess

• We chose winds of (1 + αx, 0, 0) where α ∈ [0.001, 1]

◦ Optimization succeeded for α ≤ 0.6

• Used the optimal output from α = 0.5 as the initial guess for α = 1

◦ Optimization succeeded

• Conclusion: need to generate a better initial guess!
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Future Goals

• Currently working on implementing DMOC with actual wind fields from WRF

◦ Will likely use “receding-horizon” to build in time dependence (i.e. assume wind fields
are constant over hourly intervals)

• Use Lagrangian Coherent Structures to initiate DMOC

◦ Inanc, T., S.C. Shadden and J.E. Marsden Optimal trajectory generation in ocean
flows, Proc. of 2005 American Control Conference, (2005), 674-679.
⋄ Demonstrated that LCS “provide a good correspondence with optimal trajectories

for autonomous underwater gliders in the ocean”
⋄ Asked question: “Can computations of optimal trajectories be sped up by using

information of LCS to initialize the optimization code?”

• Use DMOC primitives for real-time computation

◦ Curse of dimensionality?

• Implement a more sophisticated model of balloon dynamics
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