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OPTIMIZATION OF SPACECRAFT TRAJECTORIES: A METHOD
COMBINING INVARIANT MANIFOLD TECHNIQUES AND

DISCRETE MECHANICS AND OPTIMAL CONTROL

Ashley Moore∗, Sina Ober-Blöbaum†, and Jerrold E. Marsden‡

A mission design technique that uses invariant manifold techniques together
with the optimal control algorithm DMOC produces locally optimal, low ∆V tra-
jectories. Previously, invariant manifolds of the planar circular restricted three
body problem (PCR3BP) have been used to design trajectories with relatively
small ∆V . Using local optimal control methods, specifically DMOC, it is pos-
sible to reduce the ∆V even further. This method is tested on a trajectory which
begins in Earth orbit and ends in ballistic capture at the Moon. DMOC produces
locally optimal trajectories with much smaller total ∆V applied in distributed way
along the trajectory. Additionally, DMOC allows for variable flight times, leading
to smaller ∆V necessary for lunar orbit insertion. Results from different Earth to
Moon missions are presented in table form to show how the DMOC results fit in
with actual missions and different trajectory types. The ∆V of the DMOC results
are, on average, 20%-27% better than the ∆V of trajectories produced using a
Hohmann transfer.

INTRODUCTION

Many techniques focus on the design of spacecraft trajectories. Numerous successful NASA
mission trajectories were designed using 2-body patched conics. Furthermore, invariant manifolds
of the planar circular restricted 3-body problem (PCR3BP) have been used to find energy efficient
trajectories that follow the natural dynamics of the solar system from one region of space to another.
The 3-body problem is well understood and allows for the design of complicated trajectories not
possible using patched conics. What about the design of a trajectory in the 4-body problem? Since
theN -body problem is notoriously difficult to solve, much work has focused on patching multiple 3-
body systems together, which typically include impulsive control at the intersection of the invariant
manifolds of the two systems. The work of this paper aims to extend this method, to solve the
problem using 4-body dynamics and to apply local optimal control throughout the trajectory, instead
of impulsive control concentrated at the intersection. Does the application of small ∆V throughout
the trajectory, designed using an optimal control scheme, minimize the total ∆V ? This paper seeks
to answer that question by combining invariant manifold techniques in the PCR3BP with the optimal
control algorithm DMOC (Discrete Mechanics and Optimal Control).

Since the 1950’s countless missions have targeted the moon, sending spacecraft along trajecto-
ries for fly-bys, lunar observation orbits, and both manned and unmanned lunar landings. More
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recently, propulsion technology and design techniques, including the use of invariant manifolds,
have facilitated the design of creative, fuel efficient trajectories. For example, in an effort to sal-
vage Japan’s Hiten mission, Belbruno and Miller (1993)1, 2 designed an unusual and fuel efficient
trajectory utilizing invariant manifolds that resulted in ballistic capture at the Moon. In addition,
ESA’s SMART-1, Camino et. al (2005),3 was launched in 2003 to demonstrate the potential use of
ion propulsion for future interplanetary and deep space missions. The sustained thrust provided by
the ion thruster allowed the spacecraft to spiral out from an elliptical orbit around the Earth to the
Moon and then spiral in for lunar capture. This paper focuses on the transfer from the Earth to the
Moon along a trajectory that uses invariant manifolds, like Hiten, and control applied throughout
the entire trajectory, like SMART-1.

Invariant Manifold Techniques

Invariant manifolds are tube-like structures along which a spacecraft may travel using no energy.
The manifolds can lead, for example, to periodic orbits around the Lagrange points of the PCR3BP.
Conley (1968)4 and McGeehee (1969)5 were the first to study the orbit structures around the L1

and L2 Langrange points. The transport made possible by invariant manifolds has been exploited
for several different trajectories. For example, the work of Belbruno and Miller (1993)1 mentioned
above presents the idea of patching these invariant manifold tubes together to effect transfer between
the Earth and the Moon. Gómez et al. (1993)6 studies transfer from the Earth to a Halo orbit about
the L1 equilibrium point of the Sun-Earth 3-body system. Invariant manifolds are also used by
Gómez et al. (2001)7 to design a trajectory that tours the Moons of Jupiter. Koon et al. (1999),8

Gómez et al. (2004),9 and Dellnitz et al. (2001)10 explain how heteroclinic connections between
libration orbits enable the existence of a trajectory like the one used by the Genesis mission. This
work focuses on the trajectory studied in Koon et al. (2001 and 2000)11, 12 and Belbruno and Miller
(1993)1 which follows invariant manifolds to transfer from the Earth to the Moon.

Invariant manifold techniques usually only provide trajectories for uncontrolled spacecraft. Rather
impulsive control is used at the intersection between different invariant manifolds. An extension of
invariant manifold techniques in order to account for a continuously applied control force is pre-
sented in Dellnitz et al. (2006)13 and applied to design a trajectory from Earth to Venus and from
Earth to L2,14 respectively. However, so far these techniques are only computationally reasonable
for a constant one-dimensional control force. Instead we are interested in a time-dependent control
law influencing all degrees of freedom of the spacecraft in each time point which are optimal w.r.t. a
certain goal. Therefore, the application of a local optimal control scheme is indispensible for the
design of trajectories with more complex control laws. Thereby, the computed thrustless trajectories
designed with the help of invariant manifold techniques serve as initial guess for the optimization
of the controlled model.

Local Optimal Control

Optimal control methods have been applied to many different space related problems already.
For example, in Junge et al. (2005),15 DMOC is used to optimally raise a spacecraft in circular
orbit to an orbit of greater radius and to reconfigure a group of hovercraft. Trajectory design in the
4-body problem is a natural extension for DMOC. There are many local optimal control methods
and a short overview is warranted. In principle, there are indirect and direct local optimal control
methods; here we will focus on direct methods, where the optimal control problem is transformed
into a constrained optimization problem by an appropriate discretization of the differential system
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under consideration. Some well-known direct methods include shooting (see e.g. Stoer and Bulirsch
(1993),16 Kraft (1985),17 Hicks and Ray (1971)18), multiple shooting (see e.g. Deuflhard (1974),19

Book and Plitt (1984),20 Leineweber et al. (2003)21), and collocation methods (see e.g. von Stryk
(1993),22 Biegler (1984)23). These methods rely on a direct integration of the associated ordinary
differential equations or on its fulfilment at certain grid points, see also Betts (1998)24 and Binder et
al. (2001)25 for an overview of the current state of the art. In contrast to these previously mentioned
methods, the recently developed DMOC (Discrete Mechanics and Optimal Control (Ober-Blöbaum
(2008)26 and Junge et al. (2005)15) is based on the discretization of the variational structure of
the mechanical system directly. The discretization of the Lagrange-d’Alembert principle27 leads to
structure preserving time stepping equations which serve as equality constraints for the resulting
finite dimensional nonlinear optimization problem. This problem can be solved by standard nonlin-
ear optimization techniques such as sequential quadratic programming (see e.g. Gill et al. (1997),28

Gill et al. (2000),29 Powell (1978)30 and Han (1976)31).

Shoot the Moon

The method presented in this article is tested on the Shoot the Moon problem, presented by Koon,
Lo, Marsden and Ross.12 The Shoot the Moon problem computes a trajectory which begins in low
Earth orbit, travels along the invariant manifolds of the Sun-Earth and Earth-Moon PCR3BPs, and
ends in orbit about the Moon. The trajectory presented in Koon et al. (2000)12 requires a total
∆V of approximately 3,245 m/s which consists of two parts: an initial thrust to escape Earth orbit
(3,211 m/s), and a thrust applied mid-course (34 m/s). This trajectory results in ballistic capture at
the Moon. The spacecraft is not, however, inserted into orbit about the Moon. The results presented
in this article include a ∆V applied at the Moon for this orbit insertion. A trajectory similar to that
of Koon et al. (2000)12 is produced and used as an initial guess for DMOC, which searches for an
optimal trajectory in the 4-body system, applying control throughout the trajectory to decrease the
total ∆V .

Organization of the Article

The remainder of this article is organized as follows: the Problem Formulation and Methods sec-
tion presents the basics necessary to understand the problem and the methods in use. Specifically,
the theory is described in subsections Trajectory Design Using Invariant Manifolds of the 3-Body
Problem, Bicircular 4-Body Model, and Discrete Mechanics and Optimal Control. The Optimiza-
tion Procedure section delineates the specific process used to implement DMOC using an initial
guess derived from a trajectory designed using the Invariant Manifolds of the 3-body problem. This
section is followed by the Optimization Results, Conclusions, and Future Work.

PROBLEM FORMULATION AND METHODS

The fundamental theory and the problem description that form the basis for this work is presented
in this section including invariant manifolds of planar restricted 3-body problem, the bicircular 4-
body model, and DMOC.

Trajectory Design Using Invariant Manifolds of the 3-Body Problem

The Shoot the Moon problem begins with two coupled planar circular restricted 3-body prob-
lems.12 The geometry of the PCR3BP is shown in Figure 1. For each PCR3BP, the motion of a
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body is described under the influence of two main bodies, either the Sun and the Earth in the Sun-
Earth system or the Earth and the Moon for the Earth-Moon system. Each system is described in a
rotating coordinate frame and mass is normalized with the mass parameter

µ =
M2

M1 +M2
(1)

where M1 > M2. For example, in the Sun-Earth 3-body system, M1 denotes the mass of the
Sun and M2 denotes the mass of the Earth. The normalized mass of the larger body is denoted by
m1 = 1 − µ, and the normalized mass of the smaller body is m2 = µ. The two primary bodies
rotate in circular, planar orbits about their common center of mass at the origin. The third body, the
spacecraft, is assumed to have infinitesimal mass. The primary bodies, m1 and m2, are positioned
at (−µ, 0) and (1− µ, 0), respectively. The equations of motion for the PCR3BP are

ẍ− 2ẏ =
∂Ω
∂x

(2)

ÿ + 2ẋ =
∂Ω
∂y

(3)

where

Ω =
x2 + y2

2
+

1− µ√
(x+ µ)2 + y2

+
µ√

(x− 1 + µ)2 + y2
(4)

The system, Eq. (2)-(4), has five equilibrium points L1, . . . , L5 (cf. Figure 1); the unstable L2 point
is of interest for this work.

Figure 1 Geometry of PCR3BP in Sun-Earth rotating frame with two primary
masses, m1 and m2, and Lagrange points {Li}5

i=1.

Stable and unstable manifolds emanate from the periodic orbit of the L2 Lagrange point, shown
in Figure 2. These manifold tubes control transport into and out of the region around m2.12 The
unstable manifold of the Sun-Earth system leads away from the periodic orbit around L2, while
the stable manifold leads towards the periodic orbit. Only the stable manifold of the Earth-Moon
system is shown because this manifold controls transport from an exterior region to the Moon.

The equations of motion for the PCR3BP are Hamiltonian and time independent, so there exists
the following energy integral

E =
1
2

(ẋ2 + ẏ2)− Ω(x, y) (5)
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(a) (b)

Figure 2 Manifolds emanate from the periodic orbit about L2 (a) Stable (bottom) and
Unstable (top) manifolds of the Sun-Earth L2 Lagrange point. (b) Stable manifold of
Earth-Moon L2 Lagrange point.

The phase space of the PCR3BP may be divided into regions of possible and forbidden motion based
on this energy.32 There are five possible cases, with the first four cases shown in Figure 3. Each plot
shows the Hill’s region, a projection of the energy surfaceM(µ, e) = {(x, y, ẋ, ẏ)|E(x, y, ẋ, ẏ) =
e} onto configuration space, for a particular energy level. The cases are distinguished by the critical
energy {Ei}5i=1, which represents the energy of a particle at rest at the Lagrange point{Li}5i=1. For
example, if the energy of the spacecraft is greater than E2 but less than E3, it is energically possible
for the spacecraft to move through the manifold tubes from the region surroundingm2 to an exterior
region and vice versa, as shown in plot (c) of Figure 3. Furthermore, this energy is important for
transfer between manifolds of different PCR3BPs.

To achieve transfer between the Earth and Moon using the invariant manifolds, a first step is to
locate the intersection of the unstable Sun-Earth manifold with the stable Earth-Moon manifold. A
Poincaré section is used to find this intersection in the Sun-Earth rotating frame. The phase of the
Earth-Moon frame with respect to the Sun-Earth frame can be adjusted until a suitable intersection
is found.

Using the Poincaré section, shown on the right hand side of Figure 4, a patch point is selected that
falls within the stable manifold of the Earth-Moon system and outside the unstable manifold of the
Sun-Earth system. From the Poincaré section, the patch point includes x, y, and ẏ. The x-velocity,
ẋ, is selected so that the energy integral at the patch point equals that of the desired manifold.
Forward integration of the conditions at the patch point (x, y, ẋ, ẏ) leads to a trajectory that flows
through the stable Earth-Moon manifold and ends near the Moon. The same initial conditions are
modified slightly in ẋ and ẏ and integrated backwards, generating a trajectory that hugs the unstable
Sun-Earth manifold and then twists, targeting back to the Earth. The modification in the velocity
ensures that the energy of the spacecraft is at the appropriate level to travel along the Sun-Earth
manifold in the desired manner. The Sun-Earth and Earth-Moon trajectories are patched together
to form a trajectory which begins at the Earth and ends at the Moon. Note that at the patch point,
the energy is discontinuous; therefore, a ∆V is necessary to jump from the energy level of the
Sun-Earth manifold to the energy of the Earth-Moon manifold. For mathematical details about this
process, we refer to Koon et al. (2001)12 and Ross (2004).32 The trajectory is shown in Figure 5;
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(a) E < E1 (b) E1 < E < E2

(c) E2 < E < E3 (d) E3 < E < E4 = E5

Figure 3 Regions of possible motion: (a) P cannot move between m1 and m2 (b) P
can move between m1 and m2 via L1 (c) P may move from m1 to m2 to exterior
region via L1 and L2 (d) P may travel past m1 to exterior region via L3. Case 5,
E > E5, is not shown: P may move freely in x-y plane.

it begins in an 315 km radius circular orbit about the Earth and ends in an 3.82 · 105 km circular
orbit about the Moon. An initial thrust of 3,246.9 m/s is required to escape Earth orbit along the
trajectory, a mid-course ∆V of 124.3 m/s is applied at the patch point, and a final ∆V of 3,024.0
m/s is required to settle into a permanent circular orbit at the Moon.

Bicircular 4-Body Model

The trajectory created in the previous section is valid for the patched 3-body problem only. We
want to optimize the trajectory in the 4-body problem. Therefore, it is necessary to create a new
trajectory, beginning at the same patch point and integrating forwards and backwards using 4-body
dynamics. The bicircular 4-body model describes the dynamics of the Sun, Earth, Moon, and
spacecraft as follows. The Earth and Moon rotate in planar circular motion about their common
center of mass. Then, the barycenter of the Earth-Moon system and the Sun rotate in planar circular
motion about the common center of mass of the three bodies. As before, the mass of the spacecraft
is negligible. Figure 6 shows the geometry of this 4-body model. The equations of motion for this
model in Sun-Earth rotating coordinates are32

ẍ− 2ẏ =
∂Ω
∂x

(6)

ÿ + 2ẋ =
∂Ω
∂y

(7)
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Figure 4 Poincaré section showing the intersection of the Sun-Earth unstable mani-
fold with the Earth-Moon stable manifold. The patch point of the manifolds is chosen
inside the stable Earth-Moon manifold and outside unstable Sun-Earth manifold.

where

Ω =
x2 + y2

2
+

µS√
(x− xS)2 + y2

+
µE√

(x− xE)2 + y2
+

µM√
(x− xM )2 + (y − yM )2

(8)

and µS , µE , and µM are the normalized mass of the Sun, Earth, and Moon, respectively, given by

µS = 1− µ (9)

µE = µ (10)

µM =
MM

MM +ME +MS
= 3.734 · 10−8 (11)

and

µ =
ME +MM

ME +MM +MS
= 3.036 · 106 (12)

Note that Mi, i = E,M,S, denotes the body’s mass in kg. Also, xS , xE , and xM represent the
x-position of the Sun, Earth, and Moon respectively, and yM is the y-position of the Moon (the Sun
and Earth lie on the x-axis). The position of the Moon is a function of time given by

θM = ωM t+ θM0 (13)

xM = aM cos θM (14)

yM = aM sin θM (15)

where t is time, θM0 is the initial angle of the Moon with respect to the x-axis in the Sun-Earth
rotating frame, aM = 2.573 · 10−3 is the normalized radius of the Moon’s circular orbit, and
ωM = 12.369 is the normalized rotation rate of the Moon.

Beginning with the same initial conditions from the patch point, ẋ and ẏ are modified slightly and
integrated using the bicircular 4-body model. The modification is necessary due to the differences
between the dynamics of the PCR3BP and the bicircular 4-body problem. The point is modified
differently for the Sun-Earth section and the Earth-Moon section because of the energy differences

7



Figure 5 Trajectory in 3-body problem (in Sun-Earth Rotating coordinates), begins
near the Earth, hugs the Sun-Earth unstable manifold towards the periodic orbit of
L2. It twists and then intersects the stable manifold of the Earth-Moon system, fol-
lowing that manifold to the realm of the Moon.

between the manifolds of the two systems. Thus, the initial conditions denoted by ICSE and ICEM ,
respectively, can be expressed as

ICSE =
[
x y ẋ+ ∆ẋSE ẏ + ∆ẏSE

]
(16)

ICEM =
[
x y ẋ+ ∆ẋEM ẏ + ∆ẏEM

]
(17)

ICSE is integrated backwards to generate the Sun-Earth portion of the trajectory, and ICEM is
integrated forwards to generate the Earth-Moon portion of the trajectory. Note, that the ∆’s are
adjusted until a good trajectory is found: a trajectory which begins and ends at a desired radius
about the Earth and Moon, respectively. Note that the initial and final momentum values may not be
favorable. DMOC adjusts these momentum values according to the specified constraints and cost
function during optimization. This trajectory serves as the initial guess for DMOC.

Discrete Mechanics and Optimal Control

In order to compute a trajectory with minimal fuel consumption, we make use of local optimal
control techniques. DMOC15, 26 is an optimal control scheme that is based on a direct discretization
of the Lagrange-d’Alembert principle of the mechanical system. The discretization leads to the
forced discrete Euler-Lagrange equations which are used as optimization constraints for a given
cost function. The resulting restricted optimization problem is solved with an SQP solver.

For convenience we briefly summarize the basic idea. Consider a mechanical system to be moved
along a curve q(t) ∈ Q during the time interval t ∈ [0, T ] from an initial state (q0, q̇0) to a final state
(qT , q̇T ) under the influence of a force f(q(t), q̇(t), u(t)) where u(t) ∈ U is a control parameter.
The curves q and u are chosen to minimize a given cost functional

J(q, q̇, u) =
∫ T

0
C(q(t), q̇(t), f(q(t), q̇(t), u(t))) dt (18)
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Figure 6 Bicircular 4-Body Model: geometry in the Sun-Earth rotating frame with
three primary masses, mS , mE , and mM , and spacecraft, P . The Moon rotates
relative to the Sun-Earth rotating frame, which is stationary.

subject to the condition that the system satisfies the Lagrange-d’Alembert prcinple, which states
that

δ

∫ T

0
L(q(t), q̇(t)) dt+

∫ 1

0
f(q(t), q̇(t), u(t)) · δq(t) dt = 0 (19)

for all variations δq with δq(0) = δq(T ) = 0, where L : TQ → R is the Lagrangian consisting of
the kinetic minus potential energy of the system.

The optimal control problem stated in Eq. (18) and Eq. (19) is now transformed into a finite
dimensional constrained optimization problem by using a global discretization of the states and the
controls. We replace the state space TQ by Q × Q and consider the grid ∆t = {tk = kh | k =
0, . . . , N}, Nh = T , where N is a positive integer and h the stepsize. We replace a path q :
[0, T ]→ Q by a discrete path qd : {tk}Nk=0 → Q, where we view qk = qd(kh) as an approximation
to q(kh).27, 26 Similarly, we replace the control path u : [0, T ] → U by a discrete one. To this end,
we consider a refined grid ∆t̃, generated via a set of control points 0 ≤ c1 < · · · < cs ≤ 1 as
∆t̃ = {tk` = tk + c`h | k = 0, . . . , N − 1; ` = 1, . . . , s}. With this notation, the discrete control
path is defined to be ud : ∆t̃ → U . We define the intermediate control samples uk on [tk, tk+1]
as uk = (uk1, . . . , uks) ∈ U s to be the values of the control parameters guiding the system from
xk = xd(tk) to xk+1 = xd(tk+1), where ukl = ud(tkl) for l ∈ {1, . . . , s}.

Using an approximation of the action integral in Eq. (19) by a discrete Lagrangian Ld : Q×Q→
R,

Ld(qk, qk+1) ≈
∫ (k+1)h

kh
L(q(t), q̇(t)) dt

and discrete forces

f−k · δqk + f+
k · δqk−1 ≈

∫ (k+1)h

kh
f(q(t), q̇(t), u(t)) · δq(t) dt

where the left and right discrete forces f±k now depend on (qk, qk+1, uk), we obtain the discrete
Lagrange-d’Alembert principle, Eq. (20). Therefore, it is necessary to consider discrete paths
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{qk}Nk=0 such that for all variations {δqk}Nk=0 with δq0 = δqN = 0, it is true that

δ

N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

(
f−k · δqk + f+

k · δqk+1

)
= 0 (20)

In the same manner, we obtain via an approximation of the cost functional Eq. (18), discrete cost
functions Cd and Jd, respectively.

Then, the goal of the discrete constrained optimization problem is to minimize the discrete cost
function

Jd(qd, ud) =
N−1∑
k=0

Cd(qk, qk+1, uk) (21)

subject to the constraints

q0 = q0 (22)

qN = qT (23)

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 = 0 (24)

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−k = 0 (25)

−D2L(qT , q̇T ) +D2Ld(qN−1, qN ) + f+
N−1 = 0 (26)

with k = 1, ..., N − 1. The first two constraints require that the initial and final discrete positions
match the continuous positions. The third and final constraints are the discrete momentum boundary
conditions, and the fourth condition is the forced discrete Euler-Lagrange equation resulting from
Eq. (20). Balancing accuracy and efficiency, we approximate the discrete cost function, Cd, the
discrete Lagrangian, Ld, and the discrete forces with the midpoint rule and assume constant control
parameters on each time interval with l = 1 and c1 = 1

2 as

Cd(qk, qk+1, uk) = hC

(
qk+1 + qk

2
,
qk+1 − qk

2
, uk

)
(27)

Ld(qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
(28)

f−k = f+
k =

h

2
f

(
qk+1 + qk

2
,
qk+1 − qk

2
, uk

)
(29)

Eq. (21)-(26) describe a nonlinear optimization problem with equality constraints, which can be
solved by standard optimization methods like SQP. Optionally, we can also include inequality con-
straints on states and controls.

OPTIMIZATION PROCEDURE

The optimization method can be broken into three parts: creation of the initial guess trajectory
in the 4-body problem, computation of a feasible trajectory, and DMOC optimization. Each step of
the process is performed using Matlab, and the SQP solver fmincon runs the optimization. The goal
of the optimization is to produce a trajectory that begins in an approximately 200 km altitude orbit
about the Earth and ends approximately 325 km from the Moon using minimal ∆V . As described
before, an initial guess is found using the bicircular 4-body model.
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Creation of Initial Guess

Two different initial guess trajectories are created using slightly different initial conditions, and
are shown in Figure 7. The first trajectory (IG1) is a good initial guess for the DMOC optimization
because it nearly fulfills the initial and final altitude requirements. The second guess trajectory
(IG2) ends far from the Moon to test DMOC’s ability to deal with a faulty initial guess. Table 1
shows the differences between these two trajectories. The ∆V described are impulsive ∆V which
are applied at the first node to escape Earth orbit onto the trajectory (∆VE), at the patch point to
jump from manifold to manifold (∆Vtraj), and at the final node to inject into circular orbit about
the Moon (∆VM ).

(a) (b)

Figure 7 Initial guess trajectories in the 4-body problem (a) IG1, Total ∆V =
5, 281.8 m/s with ∆Vtraj = 197.2 m/s (b) IG2, Total ∆V = 4, 897.5 m/s with
∆Vtraj = 202.0 m/s. ∆Vtraj is applied at the patch point, shown in Figure 8.

Table 1. Details of Initial Guess Trajectories

IG1 IG2

Initial Earth Orbit Altitude (km) 206.9 215.1
Final Moon Orbit Altitude (km) 326.8 16,228.0

Time of Flight (days) 175.5 178.8
Total ∆V (m/s) 5,281.8 4,897.5

∆VE (m/s) 3,216.0 3,222.7
∆VM (m/s) 1,868.7 1,472.8

∆Vtraj (m/s) 197.2 202.0
Number of nodes 271 259

For an initial guess trajectory, we use a constant step size between nodes for DMOC. However,
the nonlinearity of the dynamics poses a problem. If a single step size is used throughout the tra-
jectory, two scenarios are possible. First, if a medium step size is used, e.g. O(10−2), there are not
enough nodes near the Earth and Moon to accurately capture the dynamics. On the other hand, if a
sufficiently small step size is used, e.g. O(10−5), there are too many nodes for a reasonable compu-
tation time. To solve this problem, the trajectory is broken into m separate sections of uniform step
size hi with discrete paths (qi)d and discrete control paths (ui)d, i = 1, . . . ,m. Then, when DMOC
is applied, the position and velocity at the boundaries are enforced as additional constraints for the
optimization problem. For example, the position and velocity of the final node of section 1 must
equal that of the first node of section 2. Four sections are chosen as the ideal number to capture the
dynamics in the fewest number of nodes. As shown in Figure 8, section 1 is nearest to the Earth,
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section 2 covers a small section leading away from the Earth, section 3 covers the majority of the
trajectory away from the influence of the Earth and Moon, and section 4 is near the Moon. For
example, the step sizes used for IG1 are h1 = 1 · 10−5, h2 = 2 · 10−3, h3 = 2 · 10−2, h4 = 1 · 10−4,
respectively.

Figure 8 Sections of Initial Guess 1. The trajectory is divided into four sections
of uniform step size ensuring that the trajectory consists of sufficient nodes near the
Earth and Moon to capture the dynamics but few enough total nodes for reasonable
computation time using Matlab.

Feasible Trajectories

For DMOC, the state q includes (x, y) and represents the x- and y-position of the trajectory. The
Lagrangian describing the bicircular 4-body model is

L =
1
2
(
ẋ2 + ẏ2

)
+

1
2
(
x2 + y2

)
+ xẏ − yẋ+

µE√
(x− xE)2 + y2

+
µS√

(x− xS)2 + y2
+

µM√
(x− xM )2 + (y − yM )2

(30)

The control force, f(q, q̇, u) = u, consisting of the control parameters (ux, uy) represents the con-
trol force in the x- and y-direction, respectively. The next step before the optimization is the for-
mulation of a feasible trajectory. By definition, a feasible trajectory is a solution that satisfies the
dynamics of the system and desired boundary conditions but is not optimal. To create a feasible
trajectory, DMOC is applied with the cost function set to one, allowing DMOC to adjust the opti-
mization variables to fulfill the constraints. The constraints require that the forced discrete Euler-
Lagrange equations are fulfilled (enforcing the dynamics), the initial altitude orbit about the Earth
must be 206.9 km, and the final altitude at the Moon must be 326.8 km. These numbers were chosen
to match those of IG1. Also, the initial and final radial velocity must be zero. Now, this procedure
is applied to IG1 and IG2 in two different ways. For the first case, the flight time is held constant
and the resulting trajectories are called Feasible FFT1 and FFT2 (Fixed Flight Time). For the sec-
ond case, another optimization variable, λ, is introduced that allows the flight time to be adjusted
by DMOC. λ ∈ [0.01, 1.5] is a scaling factor and is applied to the step size in section 4; that is,
h4new = λh4. Since each section consists of a constant number of nodes, variation of the step size
changes the final time. Feasible trajectories created using this modification are denoted Feasible
VFT1 and Feasible VFT2 (Variable Flight Time). Figure 9 shows each of the feasible trajectories,
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and Figure 10 shows the time evolution of the control magnitude U =
√
u2

x + u2
y, for each trajec-

tory. Note that the control profile does not include ∆VE and ∆VM . Also, notice that for Feasible
FFT2 and Feasible VFT2, there is a second spike in addition to the one representing the impulsive
∆V at the patch point. This impulse is added by DMOC to fulfill the final altitude condition at the
Moon, reducing the final altitude from 16,228 km for the initial guess to 326 km for the feasible
trajectory. Table 2 displays the flight time and ∆V for each of the feasible trajectories.

(a) (b)

(c) (d)

Figure 9 Feasible trajectories with fixed flight time (FFT) and variable flight time
(VFT): a) Feasible FFT1, Total ∆V = 3, 759.8 m/s, b) Feasible FFT2, Total ∆V =
3, 970.0 m/s, c) Feasible VFT1, Total ∆V = 3, 759.8 m/s, and d) Feasible VFT2,
Total ∆V = 3, 864.0 m/s.

Table 2. Details of Feasible Trajectories

Feasible FFT1 Feasible FFT2 Feasible VFT1 Feasible VFT2

Flight Time (days) 175.5 178.8 175.5 178.8
Total ∆V (m/s) 3,759.8 3,970.0 3,759.8 3,864.0

∆VE (m/s) 2,931.4 3,028.0 2,931.4 3,028.0
∆VM (m/s) 631.3 644.0 631.3 632.9

∆Vtraj (m/s) 197.2 298.0 197.2 203.1

Optimization

Now, the feasible trajectories are used as initial guesses for the full DMOC optimization. For
optimization with fixed flight time (FFT), the discrete cost function is

Jd(ud) = h1‖(u1)d‖+ h2‖(u2)d‖+ h3‖(u3)d‖+ h4‖(u4)d‖+ αδVM (31)
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(a) (b)

(c) (d)

Figure 10 Control magnitude for feasible trajectory (excluding ∆VE and ∆VM ): a)
Feasible FFT1, b) Feasible FFT2, c) Feasible VFT1, and d) Feasible VFT2.

where (ui)d = {(ux,1, uy,1)k}Ni−1
k=0 is a vector of length 2Ni with Ni + 1 being the number of

discretization points per section, ‖ · ‖ denotes the 2-norm, α is a scaling factor (10−2 for this case),
and δVM is the dimensionless ∆V needed to insert the spacecraft into a circular orbit at the final
altitude in the normalized coordinates of the Sun-Earth rotating frame. α reduces the order of
magnitude of δVM so that the order of magnitude of each of the terms in the cost function is the
same. Without this scaling factor, δVM is much larger than the other terms in Eq. (31), and it
dominates the optimization. The ∆V applied throughout the trajectory, based on the control forces
computed with DMOC, is computed as follows

∆Vtraj = αV (h1‖(u1)d‖+ h2‖(u2)d‖+ h3‖(u3)d‖+ h4‖(u4)d‖) (32)

where αV scales the velocity to m/s units.

The constraints are the same as for the feasible trajectories. In addition, the magnitude of the ve-
locity at the first node (closest to the Earth) must match that of the corresponding feasible trajectory.
This constraint helps with the convergence.

For optimization with variable flight time (VFT), the cost function is

Jd(ud) = h1‖(u1)d‖+ h2‖(u2)d‖+ h3‖(u3)d‖+ h4new‖(u4)d‖+ αδVM + βλT (33)

where T is the flight time in days, α is the same scaling factor as before, and β = 10−4 is a scaling
factor for the flight time. In addition to the constraints used for the fixed flight time optimization,
the direction of velocity at the first node is required to match that of the first node of the feasible
trajectory.
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OPTIMIZATION RESULTS

DMOC is run using the feasible trajectories FFT1, FFT2, VFT1, and VFT2 as initial guesses,
leading to the locally optimal trajectories Optimal FFT1, Optimal FFT2, Optimal VFT1, and Op-
timal VFT2, respectively. The trajectories are shown in Figure 11 and the flight time and ∆V are
shown in Table 3.

Table 3. Details of Optimal Trajectories

Optimal FFT1 Optimal FFT2 Optimal VFT1 Optimal VFT2

Flight Time (days) 175.5 178.8 175.3 178.4
Total ∆V (m/s) 3,569.6 3,663.8 3,242.7 3,363.2

∆VE (m/s) 2,931.4 3,028.0 2,931.4 3,028.0
∆VM (m/s) 632.8 632.7 304.5 330.5

∆Vtraj (m/s) 5.5 3.1 6.8 4.7

In Figure 11, it is clear that each optimal trajectory follows the general shape of the feasible
trajectory used as the initial guess for DMOC, demonstrating the importance of the initial guess and
the local nature of the solutions. In Table 3, notice ∆Vtraj . For the feasible trajectories, ∆Vtraj

is 197.2 m/s, 298 m/s, 197.2 m/s, and 203.1 m/s for Feasible FFT1, FFT2, VFT1, and VFT2,
respectively, and is concentrated primarily in one or two impulses. Compare that impulsive control
profile with those shown in Figure 12. The control for the optimal trajectories is spread out over the
entire trajectories with smaller magnitude. ∆Vtraj is reduced to just 5.5 m/s, 3.1 m/s, 6.8 m/s, and
4.7 m/s for Optimal FFT1, FFT2, VFT1, and VFT2, respectively. Now, note the similarity between
Optimal FFT1 and Optimal FFT2. Even though the first initial guess for Optimal FFT2 (IG2) did not
end close enough to the Moon, DMOC still finds a good optimal solution that fulfills the constraints
and final altitude requirements. However, since IG1 does fulfill the final altitude requirement, the
total ∆V of Optimal FFT1 is slightly better than Optimal FFT2. When comparing the fixed flight
time results to the variable final time results, two things are important. Obviously, the flight times
are different, but only slightly. More noticeable is the difference in ∆VM . The variability of the
flight time enables the final position of the Moon to change, allowing DMOC to find a trajectory
with a smaller ∆V to move into circular orbit about the Moon. However, even though ∆VM is
smaller for Optimal VFT1 and VFT2, the ∆Vtraj is just slightly higher.

Next we compare these results to the ∆V required using the Hohmann transfer method. As
shown in Figure 13, the Hohmann transfer consists of two ∆V : ∆V1 is required to move from
the initial circular Earth orbit onto the transfer ellipse. Then, ∆V2 is applied for circular Moon
orbit insertion. Table 4 shows the percentage improvement of the DMOC optimal solution over
the Hohmann transfer method. The DMOC optimal trajectory, Optimal VFT1, produces the best
results, moving from Earth orbit to Moon orbit using 27.7% less ∆V than the Hohmann transfer.
While the optimal trajectories use much less ∆V , the travel time is much longer. On average, a
Hohmann transfer takes approximately 5 days to reach the Moon. As shown in Table 3, a spacecraft
following one of the trajectories from Figure 11 would travel for 175 - 178 days before reaching the
Moon. Therefore, these type of trajectories are best suited for missions in which flight time is not
critical.

Furthermore, how do the DMOC results fit in the context of other Moon missions? Table 5
presents the results for 3 missions (SMART-1, Hiten, Shoot the Moon), as well as the best DMOC
result for Optimal VFT1. The table includes details about the ∆V , initial and final orbit conditions,
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(a) (b)

(c) (d)

Figure 11 Optimal trajectories for a) Optimal FFT1, Total ∆V = 3, 569.6 m/s with
∆Vtraj = 5.5 m/s, b) Optimal FFT2, Total ∆V = 3, 663.8 m/s with ∆Vtraj = 3.1
m/s, c) Optimal VFT1, Total ∆V = 3, 242.7 m/s with ∆Vtraj = 6.8 m/s, and d)
Optimal VFT2, Total ∆V = 3, 363.2 m/s with ∆Vtraj = 4.7 m/s.

Table 4. DMOC versus Hohmann Transfer: Total ∆V Percentage Improvement

% Improvement

Optimal FFT1 20.4%
Optimal FFT2 18.3%
Optimal VFT1 27.7%
Optimal VFT2 25.0%
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(a) (b)

(c) (d)

Figure 12 Optimal control magnitude for optimal trajectory (excludes ∆VE and
∆VM ): a) Optimal FFT1, b) Optimal FFT2, c) Optimal VFT1, and d Optimal VFT2)

Figure 13 Hohmann Transfer: spacecraft travels from circular Earth orbit to circu-
lar Moon orbit via transfer ellipse.
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and flight time. The ∆V are described in the same manner as the DMOC optimization results. Since
the ion thrusters apply small thrust throughout SMART-1’s trajectory, only the total ∆V is given.
The Hiten mission’s ∆V is broken into three impulsive thrusts, just like for the initial trajectories
designed using invariant manifolds of the 3-body problem. The first, ∆VE , is applied at the begin-
ning to move from the initial orbit, an elliptical phasing orbit, onto the trajectory. ∆Vtraj is applied
at a point nearly four times the Moon’s orbital radius from Earth, allowing natural ballistic capture.
At the end, ∆VM is applied to enter the final circular orbit. For Shoot the Moon,12 ∆VE moves the
spacecraft from circular Earth orbit onto the trajectory, and ∆Vtraj is applied mid-course to facili-
tate ballistic capture. There is no final maneuver for a lunar orbit. The ∆V of these missions cannot
be directly compared since the boundary conditions and orbits involved are completely different.
The trajectories for Hiten, Shoot the Moon, and DMOC look similar, so they are more comparable
to each other than SMART-1, which is very different. However, some general conclusions may be
drawn. First, using DMOC greatly reduces ∆Vtraj compared to that of Hiten and Shoot the Moon.
DMOC’s distributed control profile is much more efficient than a single impulse as used by Hiten
and Shoot the Moon. Also, note that starting in an elliptical orbit, like Hiten’s, results in a sig-
nificantly smaller ∆VE than starting in a circular orbit like Shoot the Moon and DMOC Optimal
VFT1.

Table 5. Moon Mission Results

Mission ∆V (m/s) Earth Orbit (km) Moon Orbit (km) Flight Time (days)

SMART-1 ∆Vtotal = 3, 500
GTO

rp = 654
ra = 35, 885

Polar
rp = 300− 450
ra = 3, 000

505

Hiten
∆VE = 14

∆Vtraj = 30
∆VM = 648

Elliptical
rp = 8, 900
ra ≈ 450, 000

Circular
r = 100 150

Shoot the Moon ∆VE = 3, 211
∆Vtraj = 34

Circular
r = 200 Ballistic capture 180

DMOC
Optimal VFT1

∆VE = 2, 931.4
∆Vtraj = 6.8
∆VM = 304.5

Circular
r = 206.9

Circular
r = 326.8 175.3

Also, it is important to note that the DMOC optimal trajectories are approximations to real tra-
jectories. Application of more advanced design software, such as the tools used at JPL, is necessary
to extend these trajectories to fully integrated trajectories with ephemeris.

CONCLUSION AND FUTURE WORK

Invariant manifolds of two PCR3BPs are successfully used to develop an initial guess for the
optimization of a low ∆V trajectory in the 4-body system. Using DMOC, it is possible to reduce
the large ∆V of 3,759.8 m/s necessary to reach the moon along the feasible trajectory, Feasible
VFT1, to just 3,242.7 m/s along the optimal trajectory, Optimal VFT1. Also, DMOC reduces the
∆V required along the trajectory from 197.2 m/s to just 6.8 m/s. Now that the combination of
invariant manifold techniques and DMOC is shown to be viable, the method could be applied to
other design problems.

For the shoot the moon problem, an adaptive time-stepping strategy for DMOC would provide a
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huge benefit and is also essential for other problems in space mission design, e.g. the trajectories
require a finer time-stepping near planets due to the strong influence of gravity, while for a transfer
in nearly free space, only a few discretization points are necessary to accurately reflect the dynamics
of the system. Here, different strategies such as error control based on the discretization grid under
consideration24 and variational approaches33 could be investigated.

In addition, since DMOC results are locally optimal, and therefore, highly dependent on initial
guess, further investigation leading to globally optimal solutions is desirable. Kobilarov (2008)34

combines DMOC with sampling-based roadmaps to compute near globally optimal solutions for
various problems including a helicopter traveling through an urban environment towards a goal state.
This motion planning method begins by compiling a library of DMOC primitives (short, optimal
paths from a start state to an intermediate goal state). Then, a sampling-based roadmap strategy
(e.g. probabilistic roadmaps) combines these DMOC primitives into a full trajectory that reaches
the goal state. The use of DMOC primitives depends on the invariance of the dynamics under
some group action.34 Due to the time-dependent nature of the dynamics of the 4-body problem,
DMOC primitives most likely will not be applicable for this problem. However, a similar strategy
may successfully lead to globally optimal trajectories in the 4-body problem. One idea is to apply
probabilistic roadmaps to create a mesh along the state space of the invariant manifolds of the
PCR3BP, and then DMOC will be used to connect points on the mesh from the start state to goal
state, minimizing the necessary control.
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