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1. Progress

1.1. Discrete Mechanics and Optimal Control. NASA is planning on a mis-
sion to Titan and would like to use a Montgol�er balloon to help gather data. It is
hoped that by optimally exploiting the winds on Titan, the balloon would be able
to autonomously navigate di�erent regions of Saturn's moon with minimal control
or time of travel. Until the mission is launched, some experiments will be run on
Earth to test methods that can be translated to solve the problem on Titan. If an
approach is to succeed on Titan, it would be hoped that it succeeds on Earth, whose
atmospheric models are much more robust and reliable due to a greater availability
of accurate data and veri�able results.

Discrete Mechanics and Optimal Control (DMOC) is a tool that allows us to
optimize trajectories satisfying a system's equations of motion. We are primarily
concerned with the problem of a balloon autonomously navigating various regions
of the Earth and appropriately exploiting the wind �elds to minimize control re-
quirements, fuel consumption, or time of travel. DMOC is the desirable tool to
investigate such problem.

We are currently working on implementing DMOC to compute optimal tra-
jectories for a balloon in a three-dimensional, time-dependent wind �eld. It is
implemented in Matlab using fmincon, an optimization routine that �nds a local
minimum of a constrained, nonlinear multivariable objective function. It has the
following inputs:

• Objective function to be minimized (also referred to as the cost function),
• Constraints which are dictated by the equations of motion for the balloon,
and

• Initial guess of the optimal trajectory.

For the purposes of navigating a balloon, we are given its initial position, q0, and
initial velocity, p0. We are also given the balloon's target destination, qf , though
we may or may not be concerned with its �nal velocity. In some circumstances we
are primarily concerned with reaching the target and in other circumstances we are
also concerned with staying there. Fortunately, these problems are very similar in
nature and can be solved by the same approach.

We use a discrete trajectory with N time nodes between initial and �nal states
such that (N + 1) · h = tf , where h is a constant time step and tf is the time of
travel. Let us de�ne qi as the generalized position, pi as the generalized impulse,
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and fi as the control force. We want to �nd the set of {qi}, {pi}, and {fi} that
satisfy the constraints and minimize the objective function. It is of note that we
are choosing to not �x tf so that the optimization will also search over trajectories
with varying �nal time (i.e. it searches for an optimal h).

1.1.1. Objective Function. At the moment, we are primarily concerned with opti-
mizing the amount of control required for the balloon to navigate from the initial
to �nal point, however it is feasible to also optimize the time of travel or other
parameters, depending on the problem at hand.

Currently, we are choosing to use the l2-norm of {fi} as the measure of control,
so we want to minimize ∑

i

f2
i .

However, our approach is not limited to this problem. If we were to eventually
choose a more sophisticated model of balloon dynamics, where fuel is an explicit
parameter, we can instead try to minimize fuel consumption.

1.1.2. Constraints. Naturally, any optimal trajectory must obey physical laws and,
thus, must satisfy the balloon's equations of motion. Initially, we choose a very sim-
ple model of balloon dynamics. The idea is that once it is successfully implemented,
we will then employ a more realistic and sophisticated model.

The following describes an intuitive derivation of the model. If we consider
the trajectory {q0, q1, . . . , qN , qf}, we approximate the velocity of the balloon (in
absence of wind) as

qi+1 − qi
h

= pi,

where pi are evaluated on a staggered grid, speci�cally at the midpoint between
qi+1 and qi. If we were to incorporate the in�uence of wind, we would naturally
write

qi+1 − qi
h

= pi +Wind(
qi+1 + qi

2
, ti+ 1

2
).

Similarly, we approximate the control force as

pi+1 − pi

h
= fi+1

where fi+1 are also evaluated on a staggered grid, at the midpoint between pi+1

and pi (which one may note is where the qi are located).
We are currently working on a more sophisticated model, which is described in

detail in Section 3.

1.2. Weather Research and Forecasting Model. The in�uence of wind is a
signi�cant component of the constraint equations and heavily determine regions
that the balloon can and cannot reach. Moreover, since we are investigating the
problem of a balloon appropriately exploiting winds to reach high priority targets,
it is important to obtain actual wind �elds from the region of interest. To do so,
we use the Weather Research and Forecasting (WRF) model. It is a numerical
weather prediction system used for both research and forecasting applications. For
my purposes, it is capable of providing wind velocities (i.e. speed and direction) at
di�erent latitudes and longitudes. As a simple example to demonstrate the WRF
model, we consider a region of the Mojave Desert on July 5, 2005 at 12:00pm. We
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chose the Mojave Desert because it is the likely location of a balloon demonstration
�ight currently planned to take place in 2009. Figure (5.1) (see Appendix, Section
5) is a visualization of an output of WRF. It is a plot of the x-direction wind velocity
at di�erent sigma levels. Sigma is used as the vertical coordinate as opposed to
altitude because it is preferred for ease of calculation in global climate models. It is
the ratio of the pressure at a point in the atmosphere to the pressure of the surface
of the Earth beneath it.

1.2.1. Interpolating onto a Cartesian Grid. Unfortunately, WRF gives the wind
speeds on a curvilinear grid (Figure (5.2)), yet we would like it to have the wind
speeds on a uniform, rectangular Cartesian grid (Figure (5.3)). To do this, we
must �rst interpolate all the necessary data (which we will show are the wind
speeds and the geopotential height) onto the grid. In this case, the interpolation is
implemented as griddata in Matlab. We must also take into the account that the
data is staggered on an Arakawa-C grid.

Additionally, we make a change of coordinates from latitude and longitude to
Cartesian distance

(1.1) x =
π

180◦
· r · φ · cos(λ− λ0),

(1.2) y =
π

180◦
· r · (φ− φ0),

where φ is latitude, λ is longitude, and r = 6, 378 · 103m is the radius of the Earth
(for simplicity, we are assuming that the Earth is spherical). We note that (λ0, φ0)
is the origin, which in the case of Mojave Desert, will be (−116◦E, 36◦N).

Unfortunately, sigma coordinates complicate calculations for balloon navigation
and thus it is necessary to perform a change of variable from sigma coordinates to
altitude coordinates. This was done using interpolation, implemented as interp1
in Matlab. We use the geopotential height output from WRF divided by Earth's
gravity to obtain the altitude. For a given latitude and longitude, we know the
geopotential height (and hence altitude) and wind velocity at di�erent sigma levels.
We use interpolation to �nd the wind velocity at an altitude of our choice. For our
purposes, we will need to perform such interpolation for many altitudes and for all
times.

2. Problems

2.1. The Initial Guess. We note that fmincon is a local optimization routine
and its convergence to �good� local minimum (if one exists) heavily depends on an
appropriate initial guess. The initial guess not only impacts which local minimum
the optimization routine �nds, but moreover, could have bearing on whether the
optimization routine even converges at all. It appears that this was the primary
struggle faced early on in implementing DMOC.

Since it is possible to supply the initial and �nal positions for which there does
not exist a trajectory, it is also important to distinguish the failure to converge due
to a bad initial guess from the situation where there is no solution.

For our �rst implementation of DMOC, we chose an initial guess that linearly
connects the initial and �nal position. Finite di�erences was used to compute
approximate initial velocities and control forces. It is of note that this initial guess
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may not satisfy the constraints of the problem, however the optimization routine is
sometimes capable of overcoming this issue and still �nd a minimum.

We provide a brief description of the di�culty we faced. Let us consider the
following problem. We want to navigate the balloon from (7, 0, 0) to (10, 0, 2) with
an initial velocity of (0, 0, 0). For this example, we do not care what the �nal
velocity is and the time is not �xed. The wind velocity is chosen to be (1, 0, 0).
In this case, DMOC successfully is able to minimize the objective function, and
we get the trajectory and plot of control force over time in Figures (5.4) and (5.5)
respectively.

Now, let us change the wind velocity from (1, 0, 0) to (x, 0, 0). If everything
else is kept the same, the optimization routine is unable to �nd any trajectory that
successfully satis�ed the constraints let alone a minimal one. This seems to indicate
that the problem is therefore related to the choice of initial guess. To verify this,
we performed two experiments.

First, we used the working example and drastically changed the initial guess.
In this circumstance, the optimization routine failed to �nd any trajectory that
satis�ed the constraints. This is to be expected but seems to support the idea that
one cannot naively choose an initial guess.

Second, we changed the wind of the working example less drastically (using the
linear initial guess) to see what happened. We chose winds of (1 +α ·x, 0, 0) where
α ∈ [0.001, 1]. The optimization succeeded for α ≤ 0.6. We then used the output
results from α = 0.5 as the initial guess for α = 1. Whereas the optimization had
failed, it now succeeded.

These two experiments seem to con�rm that the issue had to do with the naive
choice of the initial guess. As a result, we are currently investigating ways to
generate a more reasonable initial guess.

3. Further Developments and Future Research Goals

3.1. Newton's equations for Balloon Dynamics. We are currently trying to
implement a more sophisticated model that is derived using Newton's equations for
the balloon. Although the current derivation uses some approximations, these can
eventually be replaced by a more accurate model of balloon dynamics.

3.1.1. Variables. There are three forces acting on the balloon: lift, gravity and
drag. In order to describe these forces, we introduce the following variables:

• ρ = density. We will say that ρfluid refers to the air and ρgas refers to the
gas inside the balloon. Note that ρfluid depends on elevation, temperature,
etc, however, to start, we will assume this is constant. In hot air balloons,
ρgas is controlled by changing its temperature. For now, we will assume
that we can in�uence ρgas directly.

• V = volume and A=cross-sectional area of the balloon. For now, we may
assume the balloon is a sphere, in which case its cross-sectional area is
A = πR2 and its volume is V = 4

3πR
3. Depending on the design, the

volume of the balloon could depend on elevation, temperature, etc, however
again, we will start by assuming this is constant.

• meq = mass of the equipment.
• Cd = drag coe�cient .
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• v is the velocity of the wind. Let us also consider the scalar quantity

‖v − ẋ‖ =
√

(vx − ẋ)2 + (vy − ẏ)2 + (vz − ż)2,

where vx, vy, vz are the components of the wind velocity and ẋ, ẏ, ż are the
components of the balloon velocity in the ex = (1, 0, 0), ey = (0, 1, 0), ez =
(0, 0, 1) directions.

3.1.2. Forces. The buoyant force that pushes balloon up is ρfluidgV and the grav-
itational force that pushes it down is (meq + ρgasV )g. From Newton's equations,
we have (ignoring the contribution of wind)

(meq + ρgasV )a = (ρfluidV −meq − ρgasV )g.

Drag due to the wind pushes against the direction of motion of the balloon. As-
suming quadratic dependence on relative velocity, we have (in a vector form)

Fd = −1
2
ρfluid‖v − ẋ‖2CdA

v − ẋ
‖v − ẋ‖

= −1
2
ρfluid‖v − ẋ‖CdA(v − ẋ).

Combining all forces, we have

(meq + ρgasV )ẍ = (ρfluidV −meq − ρgasV )gez

−1
2
ρfluid‖v − ẋ‖CdA(v − ẋ).

Let us introduce the following quantities

η = η(v, ẋ, ρgas) =
ρfluid‖v − ẋ‖CdA

2(meq + ρgasV )

ζ = ζ(ρgas) =
(ρfluidV −meq − ρgasV )g

meq + ρgasV

If we set q = x and p = ẋ, we get[
q̇
ṗ

]
=
[

0 1
0 η

] [
q
p

]
+
[

0
ζez − ηv

]
From this we get the following six equations:

q̇1 = p1

q̇2 = p2

q̇3 = p3

ṗ1 = ηp1 − ηvx

ṗ2 = ηp2 − ηvy

ṗ3 = ηp3 + ζ − ηvz



PATH PREDICTION FOR AN EARTH-BASED DEMONSTRATION BALLOON FLIGHT 6

3.1.3. Discretization. We use the implicit midpoint rule to discretize the equations
of motion. To avoid confusion, we now refer to qi and pi as q

(i) and p(i) respectively.

q
(1)
n+1 = q(1)n + h · (

p
(1)
n + p

(1)
n+1

2
)

q
(2)
n+1 = q(2)n + h · (

p
(2)
n + p

(2)
n+1

2
)

q
(3)
n+1 = q(3)n + h · (

p
(3)
n + p

(3)
n+1

2
)

p
(1)
n+1 = p(1)

n + h · (η ·
p
(1)
n + p

(1)
n+1

2
− ηvx)

p
(2)
n+1 = p(2)

n + h · (η ·
p
(2)
n + p

(2)
n+1

2
− ηvy)

p
(3)
n+1 = p(3)

n + h · (η ·
p
(3)
n + p

(3)
n+1

2
+ ζ − ηvz)

where

η = η(v(
qn + qn+1

2
, nh+

h

2
),

pn + pn+1

2
, ρgas

n+ 1
2
)

ζ = ζ(ρgas

n+ 1
2
).

3.1.4. Control. The control is due to changes in the density of the gas ρgas = ρgas(t)
inside the balloon. As an example of control, let us �rst consider an over-simpli�ed
problem. We minimize ˆ 1

0

ρ̇2
gasdt.

We discretize this integral on the time interval [nh, nh+ h] as

h · (ρ̇gas
n )2

and, thus, we seek to minimize

N∑
n=1

h · (ρ̇gas
n )2.

To evaluate ρ̇gas
n , we de�ne

ρ̇gas
n =

ρgas

n+ 1
2
− ρgas

n− 1
2

h
.

Therefore, we have

(ρ̇gas
n )2 = (

ρgas

n+ 1
2
− ρgas

n− 1
2

h
)2

and, thus, we minimize
N∑

n=1

(ρgas

n+ 1
2
− ρgas

n− 1
2
)2

h
,

which is equivalent to minimizing

N∑
n=1

(ρgas

n+ 1
2
− ρgas

n− 1
2
)2.
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Note that we choose an initial ρgas and other parameters so that all forces acting
on the balloon in the absence of wind are balanced, i.e.,

ρfluidV −meq − ρgasV = 0.

3.1.5. A Simple Demonstration. While the current implementation of this model
has yet to be veri�ed, we will demonstrate some preliminary results and further
motivate the concerns with the initial guess. We also mention that we may require
an alternative choice of cost function, perhaps one that also punishes higher deriva-
tives (e.g. ρ̈gas) or employs a di�erent norm (e.g. l1-norm), however this is an area
that needs to be investigated further.

Let us consider the following problem. We want to navigate the balloon from
(0, 0, 0) to (0, 0, 5) with no initial velocity or wind. We search for an optimal
trajectory using two di�erent initial guesses.

First, we try the same initial guess as described in Section 2.1 with the exception
that the initial guess for the density of gas inside the balloon at each position is
the same as it is at the initial position. In this case we get the trajectory and plot
of gas density inside the balloon over time in Figures (5.6) and (5.7) respectively.

However, if we instead choose an initial guess which is entirely zero, the opti-
mization converges slower and to a numerically worse local minimum. We get the
trajectory and plot of gas density inside the balloon over time in Figure (5.8) and
(5.9) respectively.

Intuitively, we would expect the optimal solution to be the balloon initially
lowering the density of gas inside slightly and use the induced acceleration to reach
the �nal destination. However neither of these local minima depict this scenario.
Moreover, they depict completely di�erent means of reaching the �nal destination,
possibly indicating that as sophistication is added to the model, the more critical
the initial guess becomes.

4. Interaction with Mentor

Professor Marsden conducts bi-weekly meetings where professors, post-docs,
graduate students, and scientists from JPL give talks on topics related to the Titan
mission. Myself and other SURF students then provide an update of our progress
in our own projects. Also, I have met individually with Professor Marsden sev-
eral times to further clarify details of my project and get feedback on some of my
ideas. I have been mostly in email contact with Philip Du Toit regarding questions
concerning DMOC and its implementation. Similarly, I have been in contact with
Claire Newman regarding questions concerning the Weather Research and Fore-
casting model and Nick Heavens, who provided guidance in running the model and
interpolating it onto a Cartesian grid. Claire Newman provided signi�cant aid in
the methodology described in Section (1.2.1).
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5. Appendix
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Figure 5.1. Plot of x-direction wind velocity at various di�erent
sigma levels
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Figure 5.3. Uniform, rectangular Cartesian grid onto which we
interpolate the WRF output

7

8

9

10

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

X − Direction (km)

Balloon Trajectory

Y − Direction (km)

A
lti

tu
de

 (
km

)

Figure 5.4. Optimal trajectory of balloon navigating from (7,0,0)
to (10,0,2) in wind (1,0,0)
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Figure 5.5. Control vs. Time of optimal trajectory for balloon
navigating from (7,0,0) to (10,0,2) in wind (1,0,0)
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Figure 5.7. First initial guess: Gas density inside balloon vs.
Time of optimal trajectory for balloon navigating from (0,0,0) to
(0,0,5)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

4

5

X − Direction

Balloon Trajectory

Y − Direction

A
lti

tu
de

Figure 5.8. Second initial guess: Optimal trajectory of balloon
navigating from (0,0,0) to (0,0,5)
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Figure 5.9. Second initial guess: Gas density inside balloon vs.
Time of optimal trajectory for balloon navigating from (0,0,0) to
(0,0,5)


