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1. Introduction

1.1. Motivation. The Cassini-Huygens spacecraft mission, sent to study Saturn
and its moons, revealed some incredible observational data regarding one of Saturn’s
moons, Titan. The data sent back to Earth demonstrates the likely existence of
high-latitude hydrocarbon oceans and equatorial sand dunes. The hydrocarbon
oceans are currently the only open bodies of liquid found outside of our planet [4].
The rocks on the surface are likely made up of water-ice pebbles, analogous to the
silicate sands found on Earth [3]. While life is unlikely to exist on Titan, needless
to say, its uncanny similarities to Earth have sparked the interest and curiosity of
the scientific community [5].

NASA intends on going back to Titan, likely using lighter-than-air vehicles, such
as hot-air balloons, that would be able to operate and gather data on Titan for
several years [6]. Ideally, the balloons would only need to use vertical controls to
navigate to high-priority science targets. However, if necessary, the balloons could
also be equipped with horizontal controls. Using this and the winds on Titan,
it would be hoped that the balloons could navigate between different regions of
Saturn’s moon [1].

1.2. The Problem. While the balloon is on Titan, intervening with the flight-
plan on a short time-scale is not possible. Therefore, it is necessary for the balloon
to make decisions autonomously and still be able to reach particular regions of
interest on Titan in order to gather quality data. Ideally, the balloon would be able
to exploit the wind fields of Titan as much as possible to minimize the power and
control requirements.

It is not exactly clear what type of information, particularly regarding wind
fields, that the balloon will have. A global wind model for the atmosphere of Titan
exists though it is not very robust. Moreover, this model can help the balloon
navigate Titan on a global scale, but locally may not be of much use. Even with
perfect information this problem is not easy to solve.

It is of note that the current target date for launch may not be until 2016. Until
then, some experiments will be run on Earth to test methods that can be translated
to solve the problem on Titan. If an approach is to succeed on Titan, it would be
hoped that it succeeds on Earth, whose atmospheric models are much more robust
and reliable due to a greater availability of accurate data and verifiable results.
Moreover, it is much easier to test the results on Earth as computed data can be
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relatively easily compared to experimental results. Obviously, the hope is that the
computed results would closely match the reality. If so, the techniques used to solve
the problem on Earth can be translated to approach a similar problem on Titan.

The atmospheric model we will be using for Earth is called the Weather Research
and Forecasting (WRF) Model, which produces the wind fields for a specific region
at a given time [2]. I will continue to learn more about this model, its capabilities,
and its shortcomings.

The output of the WRF Model can then be used as the input into a software
package called Newman which computes particle trajectories and Lagrangian Co-
herent Structures (LCS) using finite-time Lyapunov exponents [8]. This allows us
to describe the likely path taken by a passive balloon on a global scale, and, more
importantly, shed light into the necessary power requirements for the balloon to
reach other regions of interest (with possibility of having to overcome transport
barriers).

On a local scale, a tool called Discrete Mechanics and Optimal Control is able
to determine optimal trajectories based on a given wind field. It has been demon-
strated for a simple underwater glider in a two-dimensional time-independent water
flow. Being able to extend this for three dimensions with variable wind velocities
is essential.

As mentioned, however, it is not entirely clear what information will be available
to the balloon in order to calculate these optimal (i.e. minimal control) trajectories.
If one has perfect information about current wind velocities, one approach is to
divide the trajectory between the two points into many intermediate target steps
and compute the optimal trajectory from one intermediate step to the next. At the
very least, this can deal with the issue of variable winds (as long as the time steps are
shortened sufficiently), however its effectiveness given realistic information about
the winds needs to be investigated. One assumption that may slightly simplify the
problem is that highly-variable winds are not expected near the surface of Titan.
On the other hand, a technique operating under this assumption must be studied in
case the unexpected happens. Hopefully, over the next few years, more information
about the winds on Titan will be revealed and the forecasting model will become
more robust.

1.3. Related Ongoing Work. Much of this project could tie in with another
one investigating transport barriers in Titan’s atmosphere via Titan’s wind model
as input to calculate LCS. Along these lines, this project would also investigate
optimal strategies to travel between regions of Titan though likely on a more global
scale than the Earth-based project. Hopefully, many of my results could help this
project and vice versa.

A similar problem that requires the use of many of the same tools (i.e. LCS) is
optimization (i.e. minimization of fuel expenditure) of the spacecraft’s trajectory
to Titan. It is possible that such trajectories could include a flyby of Enceladus
(another moon of Saturn) and other moons of scientific interest.

There are other issues that need to be dealt with for the Titan mission. The
exact type of balloon that will be used is still being decided. Also, ideally, the
balloon would not have to land making it necessary for a robotic arm or some other
machine, like a rover, to do the surface sampling.
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The conglomeration of all these projects (and this is far from an inclusive list) will
help enable the Titan mission to achieve the goals of advancing our understanding
of extraterrestrial planets and moons.

2. Preparation

In order to understand the tools being used to solve the problem, I have a steep
learning curve to overcome. As a result, I have spent some time studying ODE
solvers and will study differential forms and tensor analysis. Discrete Mechanics and
Optimal Control (DMOC) [7] describes a method to calculate an optimal trajectory
subject to some physical constraints. It is mentioned that this method does not
require deriving the Euler-Lagrange equations of motion for the system, unlike the
other methods that require ODE solvers (i.e. shooting methods). To understand
the context in which this method was developed, I studied numerical methods to
solve ordinary differential equations. Two specific numerical methods mentioned,
the Euler-based approach and the midpoint rule will discussed in greater depth
here.

2.1. ODE Solvers. There are many numerical methods to solve ordinary differ-
ential equations with each having its own advantages and disadvantages. Thus it
is important to appropriately choose an ODE solver that fits a given problem.

ODE solvers can be split into two categories, explicit and implicit. Explicit
solvers are generally less expensive than implicit solvers, however they can also be
less stable. On the other hand, certain types of problems, for example stiff systems,
require an implicit solver. An example of a stiff system is the Burridge-Knopoff
model of earthquakes. Consider several block masses connected to each other via
springs. Suppose we were to pull the end block slowly over time via a spring. Due
to static friction, the blocks will not move until the accumulated force matches the
static friction of the blocks (which could take years) in which case they move very
suddenly. The differential equations that govern this model are considered stiff.

A comparison of explicit and implicit methods will be shown using Euler’s
method for a pendulum. A third semi-implicit solver, which is a symplectic one,
will also be shown. I will use properties of differential forms in the derivation of
the symplectic solver.

Let us consider the following ODE

y′ = f(t, y).

with the initial condition

y(0) = y0.

We can actually consider y to be a vector (i.e. a system of ODEs) and all the results
still apply.

The explicit Euler method is

yn+1 = yn + h · f(tn, yn).

where h is the step size. If we consider an approximation of derivatives

y(t + h) − y(t)

h
≈ y′,

then it is clear where the explicit Euler method comes from. The Euler method is
an example of multistep ODE solvers (in this case, actually, Euler is a single step
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method) which use previous values to determine the current one. An alternative
type of ODE solvers are the so-called Runge-Kutta methods.

We can consider the explicit Euler method to be like a left-end point method for
integration. From this perspective, the implicit Euler method

yn+1 = yn + h · f(tn+1, yn+1)

is like a right-end point method for integration. If f(t, y) = −ky and k was suf-
ficiently large (i.e. stiff system) the explicit method will converge for only a suf-
ficiently small step size. However, this creates numerical problems because such a
small step size could cause the solution to lose accuracy and create errors in this
solution. In this case, an implicit method is appropriate.

However, it is of note that yn+1 is on both sides of the equation for the implicit
method forcing us to solve a nonlinear equation. One approach to this is to use
fixed-point iteration to calculate yn+1. Let us consider (note that in this case, yn

is a constant)

X = yn + h · f(tn+1, X) = g(X).

The fixed point iteration

X(m+1) = g(X(m))

should eventually converges to X under certain conditions on the function g. In
particular, if g is differentiable and |g′(X)| < 1 then this iteration is guarunteed
to converge for a sufficiently close initial approximation. In the particular case of
ODEs, this condition can be controlled by selecting a sufficiently small step size h.
This iterative method allows us to compute yn+1. However, fixed point interation
is not appropriate for stiff systems.

I tested these methods for the equation of a pendulum

θ′′ + sin(θ) = 0.

where t ∈ [0, 50]. If we make the substitution x = θ and y = θ′, then we obtain the
system of differential equations

x′ = y

y′ = − sin(x).

First, consider a step size of h = 0.1 with initial conditions (x0, y0) = (0.1, 0). The
explicit Euler method gives the phase diagram in Figure (4.1) included in Appendix
(4). One immediately notices that this method does not conserve energy and in
fact increases in energy. If we decrease the step size, this becomes less noticeable
but is still a major limitation of the method.

The implicit Euler method for the same initial conditions gives the phase diagram
in Figure (4.2). Again, one notices that this method does not conserve energy and in
fact decreases in energy. Again, decreasing step size makes this less noticeable, but
if it was essential to accurately track the location of the pendulum, these methods
would not be ideal.

One can use Richardson extrapolation to improve accuracy. Sparing the details
of the method, the idea is to take linear combinations of solutions obtained from
relatively large step sizes to improve the number of digits of the solution. This
allows us to use a low-order method, such as implicit Euler, with a relatively large
step size to obtain accurate results. I will define the order of a method later.
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Let us also derive a symplectic method which has advantages for Hamiltonian
systems. We can derive a symplectic method based on the following change of
variables

p′ = p − h · sin(
q′ + q

2
)

q′ = q + h ·
p′ + p

2
where p is impulse and q is position. Using basic properties of differential forms,
let us compute dp′ ∧ dq′. We have that

dp′ = dp − h · cos(
q′ + q

2
)(

dq′ + dq

2
)

dq′ = dq + h ·
dp′ + dp

2
.

We rewrite these equations as

dp′ +
h

2
· cos(

q′ + q

2
)dq′ = dp −

h

2
· cos(

q′ + q

2
)dq

dq′ −
h

2
· dp′ = dq +

h

2
dp.

On the left hand side, we have

(dp′ +
h

2
· cos(

q′ + q

2
)dq′) ∧ (dq′ −

h

2
· dp′) = dp′ ∧ dq′ −

h

4
· cos(

q′ + q

2
)dq′ ∧ dp′.

= (1 +
h

4
· cos(

q′ + q

2
))dp′ ∧ dq′

and on the right hand side, we have

(dp −
h

2
· cos(

q′ + q

2
)dq) ∧ (dq +

h

2
dp) = dp ∧ dq −

h

4
· cos(

q′ + q

2
)dq ∧ dp

= (1 +
h

4
· cos(

q′ + q

2
))dp ∧ dq.

Therefore, we have that

dp′ ∧ dq′ = dp ∧ dq.

This demonstrates that the iterative method

xn+1 = xn + h · (
yn+1 + yn

2
)

yn+1 = yn − h · sin(
xn+1 + xn

2
)

conserves area in the configuration space. In fact, this can be also shown for any
time-independent Hamiltonian system. One may view this as the exact solution of
the perturbed Hamiltonian system. For this case, the Hamiltonian is

H(x, y) =
y2

2
− cos(x).

A symplectic method exists for the Euler-based approach as well. The one de-
rived above, written more generally as

zn+1 = zn + h · f(
zn+1 + zn

2
)

is known as the implicit midpoint rule.
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A comparison of all three methods with the same initial condition is shown in
Figure (4.3). This clearly shows the advantages of the symplectic (implicit mid-
point) method. Using this method, the phase diagram for the pendulum is shown
in Figure (4.4).

I will use the Euler methods and the midpoint rule to motivate definitions of
stability properties for different ODE solvers. Let us consider the so-called test
problem

y′ = λy

where λ may be complex. The exact solution of the test problem is

y(t) = y0 exp(λt).

We know that this solution is bounded for all t > 0 as long as ℜe(λ) < 0.
Let us first consider the explicit Euler method. We have that

yn+1 = yn + hλyn = (1 + hλ)ny0.

In order for this to be bounded we require that

|1 + hλ| ≤ 1.

The region of hλ in which the solution is bounded is a circle of radius 1 centered
at (−1, 0) in the complex plane.

In general, the region of absolute stability is the set of values for hλ for which
the solution of the test problem will remain bounded as n → ∞. In this case, the
region of absolute stability does not match the properties of the test problem. A
method is said to be stable if the region of absolute stability includes the origin.

The implicit Euler method is considered to be over-stable since the region of
absolute stability is

|1 − hλ| ≥ 1

which is the entire complex plane except for a circle of radius 1 centered at (1, 0)
in the complex plane.

Now we consider the implicit midpoint rule. We have

zn+1 = zn + h · λ
zn+1 + zn

2

which gives us

zn+1 = (
1 + h·λ

2

1 − h·λ
2

)nz0.

This solution is bounded when
∣

∣

∣

∣

∣

1 + h·λ
2

1 − h·λ
2

∣

∣

∣

∣

∣

≤ 1

or, more importantly, when ℜe(hλ) < 0. This means that the midpoint method is
A-stable.

Let us now consider the notion of the order of ODE solvers. The order, p, of
the ODE solver describes local behavior of the scheme. Specifically, as we advance
to the next iteration of the solver (i.e yn to yn+1), the local error is of O(hp+1).
If p ≥ 1 (for multistep methods) and the method is stable then the method is
convergent (the converse is also true).

The Euler methods are first order schemes while the implicit midpoint method
is second order. The classic Runge-Kutta method is fourth order. In general,
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higher order methods are preferred so that computations can be performed with a
relatively large step size.

While I will continue studying numerical methods of solving ordinary differential
equations, I will also study differential forms and tensor analysis. These subjects
play a large role in many subject areas including Hamiltonian mechanics and dy-
namical systems. I have been and will continue reading books such as Differential

Forms with Applications to the Physical Sciences by Harley Flanders and Tensor

Analysis: Theory and Applications to Geometry and Mechanics of Continua by I.S.
Sokolnikoff.

3. Future Work

3.1. Weather Research and Forecasting Model. I am starting to learn to
run the WRF model. The model is a very powerful tool that will allow me to
produce wind fields for any place and time. It is a numerical weather prediction
system designed for both research and forecasting applications. While I have yet
to be versed in its capabilities, once I am, I will be able to use it to help solve the
described problem in Section (1.2). Since a demonstration balloon flight is planned
for the Mojave Desert in 2009, ideally we would be able to use wind fields from that
location and time period. If this is not possible, we will use the wind fields in the
same location, but from another time period (e.g. same time of year, but 2005).

3.2. Discrete Mechanics and Optimal Control. It is essential that I further
my understanding of the DMOC method of calculating optimal trajectories. This
will become necessary when analyzing results and dealing with issues that might
arise. Without understanding the tools being used, I will not be able to interpret
the results they produce.

DMOC was demonstrated for computing an optimal trajectory in a two-dimensional,
time-independent flow. However, since the balloon is equipped with height con-
trol, it will be advantageous to determine these optimal trajectories in a three-
dimensional wind field. Furthermore, this wind field will likely be variable over
time and thus the optimal trajectory is unlikely to stay the same. Dealing with
this issue will likely require discretizing the trajectory and then utilizing DMOC
to compute the optimal trajectory between each discrete time step. Doing so will
allow the balloon to adjust its path to the variable winds.

Most likely this will be first accomplished for a synthesized wind field. If this
can be solved in this situation, then the problem can be extended for actual wind
fields produced by the Weather Research and Forecasting model.

This method will likely perform best under the assumption that the wind field,
though variable, will not make drastic, unexpected changes during the travel of the
balloon. However, it will be important to investigate the robustness of the method
if something unexpected takes place. It will be worthwhile to investigate what will
happen in unexpected situations and speculate ways to overcome such problems.

Ultimately, however, it is unlikely that the balloon will have perfect information
about the wind fields on Titan. As of right now, it is unclear exactly what infor-
mation the balloon will be able to gather though we could hypothesize. This may
recast the problem and make it much more difficult to solve. If time permits, I
could investigate this issue as well.
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3.3. Functions of Many Variables. I am currently investigating if an efficient
tabulation of a function of many variables can be useful for this problem. There
is a good chance that DMOC will be used to determine optimal trajectories for
the balloon on Titan. An alternative would be to precompute all the different
possible trajectories for a balloon based on a feasible set of maneuvers and then use
a look-up table to determine the optimal trajectory in a rapid manner. It is my
understanding that this type of approach was demonstrated for a helicopter flying
in a canyon.
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4. Appendix

Figure 4.1. Explicit Euler Method for Pendulum

Figure 4.2. Implicit Euler Method for Pendulum
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Figure 4.3. Comparison of Explicit and Implicit Euler and Im-
plicit Midpoint Rule for Pendulum

Figure 4.4. Phase Diagram for Pendulum Generated with Im-
plicit Midpoint Rule
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