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The Problem

e Compute realizable trajectories respecting the dynamical and geometric constraints of the
system

o Optimality
o Real-time implementation

e Problem is a variant of the classical boundary value problem, but such formulation may
not be well-suited to handle obstacles

o Often recast as an optimization problem
o Overwhelming majority of solution techniques are sampling-based due to differential
constraints

e Applicable to autonomous motion planning for aerobots or surface sampling robotic
vehicles

o Also, robotic vacuum cleaners, lawn mowers, humanoid robots designed for home
assistance, streamlining warehouse technologies, ...




Sampling-Based Motion Planners

e Basic principle: probe state space of mechanical system using a sampling scheme

o Investigate a state space with infinite number of states using finite number of samples
o Common choice is random sampling (which is probabilistically complete)
o Rate of convergence is criticall

e Collision detection

o Ensure that paths connecting states are entirely collision-free

e Local planning method to connect samples

o Motion primitives: trajectories are designed by concatenating steady state motions and
“well-practiced” maneuvers selected from a finite library

o Challenge: In many cases we do not have physically accurate or reliable models of the
dynamics




Machine Learning Guided Sampling

Rate of convergence to an optimal solution is critical in random sampling based schemes,
especially when sampling in a high-dimensional state space

|dea: use computed trajectories to guide future sampling

o (lassical methods do not systematically incorporate information about previously
computed trajectories and their costs

o Want to infer some coarse model of the cost as a function of the spatial distribution
of the trajectories

Question: how to handle obstacles?

Alternative interpretation: construct better initial guesses for trajectory optimization




Which Machine Learning Tool?

e Assumption: paths lying in different regions of the environment are not correlated

o High correlation values constitute the only meaningful information on the data set
o Emphasize local structures

e We would like to easily extract extrema information without the need to perform
optimization

e Need to consider systems with increasingly high dimensionality

o Function mapping trajectories to a cost rapidly increase in number of variables

e Locally weighted learning is a good starting point....




Locally Weighted Learning

e Distance function:

o The only information we have about the trajectories are some nodes along it
o Distance must not depend on the choice of the nodes on the trajectory
o Option: area between two trajectories

o Weighting kernel:

o Must be maximal at zero distance and decay smoothly as distance increases
o Option: k(d) = exp [—Ozodﬂ, where « is optimized using leave-one-out cross
validation

e Leave-one-out cross validation: remove the i*" data point from the training set and
predict the output at that location

o Minimize the mean squared cross validation error




Locally Weighted Learning

o Weight data directly by defining Z = WX and v = Wy

o X is matrix whose i*" row is the i*" trajectory in the training set (x;)
o y is vector whose i element is the cost corresponding to x;
o We let w; = \/k(d(xi, q)) and define the diagonal matrix W;; = w;

e Seek global model that is linear in the parameters of § expressed by the overdetermined

system Z = v

o Determine parameters of 3 that minimize criterion C' = ||v — ZS||”
o Solution given by solving the normal equations (ZTZ) B=7Z"v




First Go...

e Particle in a plane with simple obstacles and no dynamical constraints

Figure 1: Demonstration of trajectory generation using a random sampling-based scheme




Training and Test Data
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Figure 2: Plot of trajectories in the training set (left), plot of trajectories in the test set
(right)

e Trajectories are grouped based on similar costs, with green being the lowest followed by
red, blue, magenta, and yellow

o Bold trajectory indicates optimal one




Prediction

Prediction with MSE: 2.403777e-02
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Figure 3: Plot of trajectories grouped in same manner as before using the predicted cost

e Note: mean squared error is roughly 0.024

e \We are primarily concerned with general region where extrema are located

o In this case, it seems to do a good job




Future Goals

e How to extract extrema information explicitely?

e Some preliminary results indicate it is better to handle obstacles in a smooth manner

o Smoothly increase cost of paths that intersect with obstacles
o Should not impact extrema information but may help avoid artificial minima inside
obstacles

e More complicated systems with dynamics? Systems with high-dimensional state spaces?

o Locally weighted projection regression? Other options?
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Another Project...

e Often, we do not know the physical dynamics of the system, but can we learn the
dynamics experimentally?

e We are faced with the problem of learning functions in high dimensional spaces
o Very hard! Most approaches seem to require some sort of dimensionality reduction

e May bypass curse of dimensionality if we approximate the physical system well using a
separable representation
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with small separation rank r and prescribed accuracy €

. . I=1,..., . | .
e We do not fix functions {le}z:1 ; to come from a particular basis set: these functions
are determined as part of approximation

o We switch from linear to non-linear approximation
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lllustrative Examples

e Consider sin(x1+ - - -+ xg) which, using usual trigonometric formulas for sums of angles,
would have r = 29~ terms

o Numerical tests demonstrated that one only needs d terms, which led to a new
trigonometric identity

d d d .
sin Z z, | = Z sin (sz) H SlH(Zlfk; + aj — Olz)
1=1 1=1

Pl sin (a; — o)

for all choices of {a;} such that sin (a; — ;) # 0 for all ¢ # j

o Not unique and there can be ill-conditioned representations even when well-conditioned
representations are available

o Must introduce notion of conditioning for the representation
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lllustrative Examples

e Consider additive model 2?21 ¢i(x;) (where ¢; are bounded), which naively has r = d:
d A d
; ¢i(z;) = lim o <ZH1(1 + hoi(x4)) — g(l - h¢i(5’3i))>
o In the limit, we only need r = 2 terms
e Gaussians are separable:
d

exp {—c |x — z||2} — Hexp —c(z; — 22)2]

1=1

e It has performed reasonably well on various benchmark data sets (e.g., Friedman) in
comparison to other currently available methods
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Why?

Relatively new approach that still may be improved

o Currently, non-linear approximation is accomplished using alternating least squares

Quite flexible

Computation may be done off-line allowing for real-time implementation and on-line to

improve the model as new data is gathered

Current idea: can we use it to learn the dynamics of a double pendulum?

o Concern: motion is chaotic

Other ideas: learning solutions of boundary value problems, learning control parameters

that produce desired results, etc...
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