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The Problem

• Compute realizable trajectories respecting the dynamical and geometric constraints of the
system

◦ Optimality
◦ Real-time implementation

• Problem is a variant of the classical boundary value problem, but such formulation may
not be well-suited to handle obstacles

◦ Often recast as an optimization problem
◦ Overwhelming majority of solution techniques are sampling-based due to differential

constraints

• Applicable to autonomous motion planning for aerobots or surface sampling robotic
vehicles

◦ Also, robotic vacuum cleaners, lawn mowers, humanoid robots designed for home
assistance, streamlining warehouse technologies,...
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Sampling-Based Motion Planners

• Basic principle: probe state space of mechanical system using a sampling scheme

◦ Investigate a state space with infinite number of states using finite number of samples
◦ Common choice is random sampling (which is probabilistically complete)
◦ Rate of convergence is critical!

• Collision detection

◦ Ensure that paths connecting states are entirely collision-free

• Local planning method to connect samples

◦ Motion primitives: trajectories are designed by concatenating steady state motions and
“well-practiced” maneuvers selected from a finite library

◦ Challenge: In many cases we do not have physically accurate or reliable models of the
dynamics
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Machine Learning Guided Sampling

• Rate of convergence to an optimal solution is critical in random sampling based schemes,
especially when sampling in a high-dimensional state space

• Idea: use computed trajectories to guide future sampling

◦ Classical methods do not systematically incorporate information about previously
computed trajectories and their costs

◦ Want to infer some coarse model of the cost as a function of the spatial distribution
of the trajectories

• Question: how to handle obstacles?

• Alternative interpretation: construct better initial guesses for trajectory optimization
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Which Machine Learning Tool?

• Assumption: paths lying in different regions of the environment are not correlated

◦ High correlation values constitute the only meaningful information on the data set
◦ Emphasize local structures

• We would like to easily extract extrema information without the need to perform
optimization

• Need to consider systems with increasingly high dimensionality

◦ Function mapping trajectories to a cost rapidly increase in number of variables

• Locally weighted learning is a good starting point....
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Locally Weighted Learning

• Distance function:

◦ The only information we have about the trajectories are some nodes along it
◦ Distance must not depend on the choice of the nodes on the trajectory
◦ Option: area between two trajectories

• Weighting kernel:

◦ Must be maximal at zero distance and decay smoothly as distance increases
◦ Option: k(d) = exp

[

−α · d2
]

, where α is optimized using leave-one-out cross
validation

• Leave-one-out cross validation: remove the ith data point from the training set and
predict the output at that location

◦ Minimize the mean squared cross validation error
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Locally Weighted Learning

• Weight data directly by defining Z = WX and v = Wy

◦ X is matrix whose ith row is the ith trajectory in the training set (xi)
◦ y is vector whose ith element is the cost corresponding to xi

◦ We let wi =
√

k(d(xi,q)) and define the diagonal matrix Wii = wi

• Seek global model that is linear in the parameters of β expressed by the overdetermined
system Z = βv

◦ Determine parameters of β that minimize criterion C = ‖v − Zβ‖2

◦ Solution given by solving the normal equations
(

ZTZ
)

β = ZTv
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First Go...

• Particle in a plane with simple obstacles and no dynamical constraints

Figure 1: Demonstration of trajectory generation using a random sampling-based scheme
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Training and Test Data

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
Training Set

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50
Test Set

Figure 2: Plot of trajectories in the training set (left), plot of trajectories in the test set
(right)

• Trajectories are grouped based on similar costs, with green being the lowest followed by
red, blue, magenta, and yellow

◦ Bold trajectory indicates optimal one
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Prediction
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Prediction with MSE: 2.403777e−02

Figure 3: Plot of trajectories grouped in same manner as before using the predicted cost

• Note: mean squared error is roughly 0.024

• We are primarily concerned with general region where extrema are located

◦ In this case, it seems to do a good job
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Future Goals

• How to extract extrema information explicitely?

• Some preliminary results indicate it is better to handle obstacles in a smooth manner

◦ Smoothly increase cost of paths that intersect with obstacles
◦ Should not impact extrema information but may help avoid artificial minima inside

obstacles

• More complicated systems with dynamics? Systems with high-dimensional state spaces?

◦ Locally weighted projection regression? Other options?
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Another Project...

• Often, we do not know the physical dynamics of the system, but can we learn the
dynamics experimentally?

• We are faced with the problem of learning functions in high dimensional spaces

◦ Very hard! Most approaches seem to require some sort of dimensionality reduction

• May bypass curse of dimensionality if we approximate the physical system well using a
separable representation

f(x) =

r
∑

l=1

sl

d
∏

i=1

f l
i(xi) + O(ǫ),

with small separation rank r and prescribed accuracy ǫ

• We do not fix functions
{

f l
i

}l=1,...,r

i=1,...,d
to come from a particular basis set: these functions

are determined as part of approximation

◦ We switch from linear to non-linear approximation
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Illustrative Examples

• Consider sin(x1 + · · ·+xd) which, using usual trigonometric formulas for sums of angles,
would have r = 2d−1 terms

◦ Numerical tests demonstrated that one only needs d terms, which led to a new
trigonometric identity

sin

(

d
∑

i=1

xi

)

=
d
∑

i=1

sin (xi)
d
∏

j=1,j 6=i

sin(xk + αj − αi)

sin (αj − αi)

for all choices of {αi} such that sin (αj − αi) 6= 0 for all i 6= j

◦ Not unique and there can be ill-conditioned representations even when well-conditioned
representations are available

◦ Must introduce notion of conditioning for the representation
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Illustrative Examples

• Consider additive model
∑d

i=1
φi(xi) (where φi are bounded), which naively has r = d:

d
∑

i=1

φi(xi) = lim
h→0

1

2h

(

d
∏

i=1

(1 + hφi(xi)) −

d
∏

i=1

(1 − hφi(xi))

)

◦ In the limit, we only need r = 2 terms

• Gaussians are separable:

exp
[

−c ‖x − z‖
2

]

=
d
∏

i=1

exp
[

−c(xi − zi)
2
]

• It has performed reasonably well on various benchmark data sets (e.g., Friedman) in
comparison to other currently available methods
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Why?

• Relatively new approach that still may be improved

◦ Currently, non-linear approximation is accomplished using alternating least squares

• Quite flexible

• Computation may be done off-line allowing for real-time implementation and on-line to
improve the model as new data is gathered

• Current idea: can we use it to learn the dynamics of a double pendulum?

◦ Concern: motion is chaotic

• Other ideas: learning solutions of boundary value problems, learning control parameters
that produce desired results, etc...
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