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Abstract

The equations of motion of a controlled mechanical system subject
to holonomic constraints may be formulated in terms of the states and
controls by applying a constrained version of the Lagrange-d’Alembert
principle. This paper derives a structure preserving scheme for the op-
timal control of such systems using, as one of the key ingredients, a
discrete analogue of that principle. This property is inherited when the
system is reduced to its minimal dimension by the discrete null space
method. Together with initial and final conditions on the configura-
tion and conjugate momentum, the reduced discrete equations serve as
nonlinear equality constraints for the minimisation of a given objective
functional. The algorithm yields a sequence of discrete configurations
together with a sequence of actuating forces, optimally guiding the sys-
tem from the initial to the desired final state. In particular, for the
optimal control of multibody systems, a force formulation consistent
with the joint constraints is introduced. This enables one to prove the
consistency of the evolution of momentum maps. The method is applied
to a satellite reorientation manoeuvre and a biomotion problem.
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1 Introduction

This work combines two recently developed methods, namely the discrete null
space method which is suitable for the accurate, robust and efficient time
integration of constrained dynamical systems (in particular for multibody dy-
namics) and an approach to discrete mechanics and optimal control (DMOC)
based on a discretisation of the Lagrange-d’Alembert principle. The idea of
this combination has been introduced briefly in Leyendecker et al. [2007] and
is investigated in detail for three-dimensional multibody systems consisting of
rigid bodies interconnected by joints in this work.

From various available methods used to enforce holonomic constraints in the
framework of the Hamiltonian or Lagrangian formalism (see for example, Bert-
sekas [1995]; Luenberger [1984] and for a computational approach Leyendecker
et al. [2004]), the focus in this paper is on two methods yielding exact con-
straint fulfilment, the Lagrange multiplier method and a null space method,
described in, for example, Benzi et al. [2005].

Because of the relatively simple structure of the evolution equations derived
from the Lagrange multiplier method, their temporal discrete form can be
derived easily using mechanical integrators as demonstrated among others
in Betsch and Steinmann [2002]; Gonzalez [1999]; Wendlandt and Marsden
[1997]. However, the presence of Lagrange multipliers amongst the set of un-
knowns enlarges the number of equations and causes the discrete system to be
ill-conditioned for small time-steps as reported (amongst others) by Petzold
and Lostedt [1986]; Hairer et al. [1989]. In contrast to this undesirable situa-
tion, the use of a specific null space method, especially in conjunction with a
reparametrisation in generalised coordinates, has the advantageous property
of a small dimensional system of equations. On the other hand, these evolu-
tion equations have a highly complicated structure, causing the derivation of
their temporal discrete form to be expensive and therefore, in most cases, not
recommended Leimkuhler and Reich [2004]; Rheinboldt [1997].

A remedy for these difficulties is found in the discrete null space method intro-
duced in Betsch [2005], which proposes a reversal of two of the main steps when
designing a specific numerical method. In the first step, the discrete form of
the simple structured DAEs resulting from the use of the Lagrange multiplier
method is derived using a mechanical integrator, e.g. an energy-momentum
conserving integrator Betsch and Steinmann [2002]; Gonzalez [1999] or a varia-
tional integrator leading to a symplectic-momentum conserving scheme Wend-
landt and Marsden [1997]. For forced systems, both methods correctly com-
pute the change in momentum maps. Then, in the second step, the transition
to the reduced scheme and finally the nodal reparametrisation are performed
in the temporal discrete setting in complete analogy to the procedure de-
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scribed in the continuous case according to the discrete null space method.
The resulting time-stepping scheme performs excellently in all relevant cate-
gories. First of all, it yields the smallest possible dimension for the system of
equations, promising lower computational costs than other schemes. Secondly,
it is second order accurate and inherits the conservation properties from the
constrained scheme and thirdly, the condition number of the scheme is in-
dependent of the time-step. Summarising, the discrete null space method is
especially suited for the accurate simulation of large dimensional systems sub-
ject to a large number of constraints. In particular the resulting equations lend
themselves as dynamic constraints in an optimisation algorithm since their di-
mension is minimal, thus only the exactly required number of unknowns has
to be determined.

Jerry: What the two steps were that get reversed gets lost

in the exposition. Needs clarification. You might even say:

Step 1... and Step 2... to be very clear.
ToDo

To find local solutions of nonlinear optimal control problems consisting of a
given objective functional and equations describing the underlying dynamics
of the system, a numerical method falling into the class of direct methods is
used here. Thereby, the state and control variables are discretised directly in
order to transform the optimal control problem into

Jerry: "Transform" needs clarification: transform

into...should be "discretize"?
ToDo

a finite dimensional nonlinear constrained optimisation problem that can be
solved by standard nonlinear optimisation techniques such as sequential quadratic
programming (see Gill et al. [1997, 2000]; Schittkowski [1980]). In contrast to
other methods like, e.g. shooting Stoer and Bulirsch [2002]; Kraft [1985]; Hicks
and Ray [1971], multiple shooting Deuflhard [1974]; Bock and Plitt [1984];
Leineweber et al. [2003], or collocation methods von Stryk [1991]; Biegler
[1984], relying on a direct integration of the associated ordinary differential
equations or on its fulfilment at certain grid points (see also Betts [1998] and
Binder et al. [2001] for an overview of the current state of the art), a re-
cently developed method DMOC (Discrete Mechanics and Optimal Control—
see Ober-Blöbaum [2008]; Junge et al. [2005]) is used here. It is based on the
discretisation of the variational structure of the mechanical system directly. In
the context of variational integrators, as in Marsden and West [2001], the dis-
cretisation of the Lagrange-d’Alembert principle leads to structure preserving
time stepping equations which serve as equality constraints for the resulting fi-
nite dimensional nonlinear optimisation problem. In Junge et al. [2005]; Junge
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and Ober-Blöbaum [2005, 2006] DMOC was first applied to low orbital thrust
transfers and the optimal control of formation flying satellites including an
algorithm that exploits a hierarchical structure of that problem. In Kanso and
Marsden [2005], it has been applied to a multibody system representing an
articulated swimmer and was formulated in generalised coordinates.

In this work, DMOC is used to find optimal trajectories of state and control
variables for systems of rigid bodies subject to joint constraints. Each rigid
body is viewed as a constrained continuum, i.e. it is described in terms of re-
dundant coordinates subject to holonomic constraints Betsch and Steinmann
[2001]; Reich [1996]. Then the equations of motion assume the form of DAEs
with a constant mass matrix. Their temporal discrete form can be derived and
reduced according to the discrete null space method. This procedure has the
advantage of circumventing the difficulties associated with rotational param-
eters Betsch et al. [1998]; Bauchau and Trainelli [2003] and it can be gener-
alised easily to the modelling of geometrically exact beams and shells and to
multibody systems consisting of theses structures as developed in Leyendecker
et al. [2006]; Betsch and Leyendecker [2006]; Leyendecker et al. [2008a]. The
reduced time-stepping equations then serve as constraints in the optimisation
algorithm.

The combination of the two proposed methods involves several specific bene-
fits. First of all, the discrete dynamics constraints required to solve the opti-
mal control problem using DMOC can be formulated easily. Using the discrete
Lagrange-d’Alembert principle, they are derived as the discrete analogue to the
simple structured evolution equations where the configuration constraints are
enforced using Lagrange multipliers. Secondly, the discrete null space method
reduces the dynamics constraints to the smallest possible number of equations
and variables which leads to lower computational costs for the optimisation
algorithm. Thirdly, the benefit of exact constraint fulfilment and correct com-
putation of the change in momentum maps is guaranteed by the optimisation
algorithm. These benefits are important, especially for high dimensional rigid
body systems with joint constraints.

An outline of the paper is as follows. §2 fixes the formulation of the continuous
optimal control problem of constrained dynamics which is formulated in the
discrete setting in §3. Techniques for rigid body systems are set up in §4. The
constrained formulation of the dynamics of kinematic pairs and the associated
reduction of the equations of motion via the discrete null space method with
nodal reparametrisation is reviewed in §5. The main contribution is contained
in §6, which applies the theory developed in the paper to the optimal control
of multibody systems. In particular, actuating forces being consistent with the
specific joint constraints are given and structure preservation of the resulting
time-stepping scheme is proved. Numerical examples from the field of satellite
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reorientation maneuvers and biomotion are presented in §7.

2 Constrained Dynamics & Optimal Control

This section derives the equations of motion for forced holonomically con-
strained systems; these equations are to be fulfilled as constraints in the opti-
misation problem. The transformation of the differential algebraic equations
by the null space method with reparametrisation, and in particular the equiva-
lence of the resulting equations of motion, is described in detail in Leyendecker
et al. [2008b] for conservative systems.

Consider an n-dimensional mechanical system with the time-dependent config-
uration vector q(t) ∈ Q and velocity vector q̇(t) ∈ Tq(t)Q, where t ∈ [t0, tN ] ⊂
R denotes the time and N ∈ N. Let the configuration be constrained by the
function g(q) = 0 ∈ Rm with constraint manifold

C = {q ∈ Q | g(q) = 0} (2.1)

and influenced by the force field f : Rn−m × TQ→ T ∗Q.

The Optimisation Problem. The goal is to determine the optimal tra-
jectory and force field, such that the system is moved from the initial state
(q0, q̇0) ∈ TC to the final state (qN , q̇N) ∈ TC, obeying the equations of
motion and at the same time, the objective functional

J(q, q̇,f) =

∫ tN

t0

B(q, q̇,f) dt (2.2)

is to be minimised. Here, B(q, q̇,f) : TC×T ∗Q→ R is a given cost function.

Jerry: Make sure the domain of B is correct. ToDo

The Constrained Lagrange-d’Alembert Principle. As we have men-
tioned, the motion has to obey the equations of motion which, in the present
case, are based on a constrained version of the Lagrange-d’Alembert principle
(see e.g. Marsden and Ratiu [1999]), which requires that

δ

∫ tN

t0

L(q, q̇)− gT (q) · λ dt+

∫ tN

t0

f · δq dt = 0 (2.3)

for all variations δq ∈ TQ vanishing at the endpoints and δλ ∈ Rm. The
Lagrangian L : TQ → R equals the kinetic energy 1

2
q̇T ·M · q̇ including the
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consistent mass matrix M ∈ Rn×n minus a potential function V : Q → R.
Furthermore, λ(t) ∈ Rm represents the vector of time dependent Lagrange
multipliers. The last term represents the virtual work of the resulting from
the force field. The constrained Lagrange-d’Alembert principle (2.3) leads to
the differential-algebraic system of equations of motion

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
−GT (q) · λ+ f = 0

g(q) = 0,

(2.4)

where G(q) = Dg(q) denotes the Jacobian of the constraints. The vector
−GT (q) · λ represents the constraint forces that prevent the system from
deviations of the constraint manifold.

The Null Space Method. Assuming that the constraints are independent,
for every q ∈ C the basis vectors of TqC form an n × (n −m) matrix P (q)
with corresponding linear map P (q) : Rn−m → TqC. This matrix is called
null space matrix, since

range (P (q)) = null (G(q)) = TqC. (2.5)

Thus, a premultiplication of the differential equation (2.4)1 by P T (q) elimi-
nates the constraint forces including the Lagrange multipliers from the system.
The resulting equations of motion read

P T (q) ·
[
∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
+ f

]
= 0

g(q) = 0.

(2.6)

Reparametrisation. For many applications, it is possible to find a local
parametrisation of the constraint manifold F : U ⊆ Rn−m → C in terms of
independent generalised coordinates u ∈ U . Then the Jacobian DF (u) of
the coordinate transformation plays the role of a null space matrix. Since
the constraints (2.6)2 are fulfilled automatically by the reparametrised con-
figuration variable q = F (u), the system is reduced to n − m second order
differential equations. Due to the presence of constraints, the forces f are not
independent. They can be calculated in terms of the time dependent gener-
alised control forces τ (t) ∈ T ∗U . Consequently, there are n−m independent
generalised forces acting on the generalised degrees of freedom. These can be

calculated as τ =
(
∂F
∂u

)T · f , see e.g. Goldstein et al. [2002]. On the other
hand, a redundant force vector f ∈ T ∗Q can be computed via

f = BT (q) · τ , (2.7)
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with the n × (n − m) configuration dependent input transformation matrix
BT : T ∗U → T ∗Q. Thereby, the choice of the transformation matrix must
ensure consistency of momentum maps in the sense that they change only and
exactly according to the generalised force.

Jerry: Equation (2.7) perhaps to be modified according to

our discussions
ToDo

3 Constrained discrete dynamics and optimal

control

Analogous steps are performed in the temporal discrete variational setting
to derive the forced constrained discrete Euler-Lagrange equations and their
reduction to minimal dimension. Again, these steps have been investigated in
detail in Leyendecker et al. [2008b] for conservative systems.

Corresponding to the configuration manifold Q, the discrete phase space is
defined by Q × Q which is locally isomorphic to TQ. For a constant time-
step h ∈ R, a path q : [t0, tN ] → Q is replaced by a discrete path qd :
{t0, t0 +h, , . . . , t0 +Nh = tN} → Q, N ∈ N, where qn = qd(tn) is viewed as an
approximation to q(tn) at tn = t0 + nh. Similarly, λn = λd(tn) approximates
the Lagrange multiplier, while the force field f is approximated by two discrete
forces f−n ,f

+
n : T ∗U ×Q→ T ∗Q in a way that respects work, as is explained

below.

Discrete Constrained Lagrange-d’Alembert Principle. According to
the derivation of variational integrators for constrained dynamics in Leyen-
decker et al. [2008b], the action integral in (2.3) is approximated in a time
interval [tn, tn+1] using the discrete Lagrangian Ld : Q × Q → R and the
discrete constraint function gd : Q→ R via

Ld(qn, qn+1)−
1

2
gTd (qn) ·λn−

1

2
gTd (qn+1) ·λn+1 ≈

∫ tn+1

tn

L(q, q̇)− gT (q) ·λ dt.

(3.1)
Among various possible choices to approximate this integral, in this work the
midpoint rule is used for the Lagrangian, i.e.

Ld(qn, qn+1) = hL

(
qn+1 + qn

2
,
qn+1 − qn

h

)
(3.2)

and for the constraints
gTd (qn) = hgT (qn) (3.3)
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is used. Likewise, the virtual work is approximated by

f−n · δqn + f+
n · δqn+1 ≈

∫ tn+1

tn

f · δq dt, (3.4)

where f+
n ,f

−
n are called the left and right discrete forces, respectively. They

are specified in (3.11).

The discrete version of the constrained Lagrange-d’Alembert principle (2.3)
requires the discrete path {qn}Nn=0 and multipliers {λn}Nn=0 to fulfill

δ

N−1∑
n=0

Ld(qn, qn+1)−
1

2
gTd (qn)·λn−

1

2
gTd (qn+1)·λn+1+

N−1∑
n=0

f−n ·δqn+f+
n ·δqn+1 = 0

(3.5)
for all variations {δqn}Nn=0 and {δλn}Nn=0 with δq0 = δqN = 0, which is equiv-
alent to the constrained forced discrete Euler-Lagrange equations

D2Ld(qn−1, qn) +D1Ld(qn, qn+1)−GT
d (qn) · λn + f+

n−1 + f−n = 0

g(qn+1) = 0
(3.6)

for n = 1, . . . , N − 1 where Gd(qn) denotes the Jacobian of gd(qn). Note that
the time-stepping scheme (3.6) has not been deduced by discretising (2.4), but
rather via a discrete variational principle.

The Discrete Null Space Method. The dimensional reduction of the
time-stepping scheme (3.6) can be accomplished analogous to the continuous
case according to the discrete null space method. To eliminate the discrete
constraint forces from the equations, a discrete null space matrix fulfilling

range (P (qn)) = null (Gd(qn)) (3.7)

is employed. As with equation (2.6), pre-multiplying (3.6) by the transposed
discrete null space matrix cancels the constraint forces; i.e., the Lagrange
multipliers are eliminated from the set of unknowns and the system’s dimension
is reduced to n. One gets

P T (qn) ·
[
D2Ld(qn−1, qn) +D1Ld(qn, qn+1) + f+

n−1 + f−n
]

= 0

g(qn+1) = 0.
(3.8)

Nodal Reparametrisation. As in the continuous case, a reduction of the
system to the minimal possible dimension can be accomplished by a local
reparametrisation of the constraint manifold in the neighbourhood of the dis-
crete configuration variable. At the time nodes, qn is expressed in terms of
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the discrete generalised coordinates un ∈ U ⊆ Rn−m by the map F : U ⊆
Rn−m ×Q→ C, such that the constraints are fulfilled.

qn = F (un, qn−1) with g(qn) = g(F (un, qn−1)) = 0 (3.9)

The discrete generalised control forces are assumed to be constant in each time
interval, see Figure 3.1. First of all, the effect of the generalised forces acting
in [tn−1, tn] and in [tn, tn+1] is transformed to the time node tn via

τ+
n−1 =

h

2
τn−1 τ−n =

h

2
τn. (3.10)

Secondly, the components of the discrete force vectors f+
n−1,f

−
n ∈ T ∗

qn
C can

be calculated similar to (2.7) as

f+
n−1 = BT (qn) · τ+

n−1 f−n = BT (qn) · τ−n
fn = f+

n + f−n

fd = {fn}N−1
n=0 .

(3.11)

Thus f+
n−1 denotes the effect of the generalised force τn−1 acting in [tn−1, tn]

on qn while f−n denotes the effect on qn of τn acting in [tn, tn+1].

Figure 3.1: Relation of redundant forces f+
n−1,f

−
n at tn to piecewise constant

discrete generalised forces τn−1, τn.

Insertion of the nodal reparametrisation for the configuration (3.9) into the
scheme redundantises (3.8)2. The resulting scheme

P T (qn) ·
[
D2Ld(qn−1, qn) +D1Ld(qn,F (un+1, qn)) + f+

n−1 + f−n
]

= 0 (3.12)

has to be solved for un+1 whereupon qn+1 is obtained from (3.9). (3.12) is
equivalent to the constrained scheme (3.6), thus it also has the key properties
of exact constraint fulfilment, symplecticity and momentum consistency, i.e.
any change in the value of a momentum map reflects exactly the applied
forces as will be shown in §7. When no load is present, momentum maps are
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conserved exactly. While the constrained scheme (3.6) becomes increasingly
ill-conditioned for decreasing time-steps, the condition number of (3.12) is
independent of the time-step.

Jerry: Perhaps give the equation number for "the constrained

scheme"
ToDo

Remark 3.1 (Stochastic Forces). Variational integrators for stochastic me-
chanical systems driven by Wiener processes have been introduced in Bou-
Rabee and Owhadi [2008]. There, the discrete Lagrangian is augmented by
an approximation to the Stratonovic stochastic integral that represents the
stochastic influence of the Wiener processes. In Bou-Rabee and Owhadi [2007],
the idea has been generalised to constrained systems using variational parti-
tioned symplectic Runge-Kutta integration and enforcing constraints using
Lagrange multipliers. It is also possible to include the approximation to the
Stratonovic stochastic integral in (3.1), yielding constrained stochastic discrete
Euler-Lagrange equations of the form (3.6), in which the left and right discrete
forces are determined according to a normal distribution N (0, h) of random
variables in one time interval. The presence of stochastic forces does not influ-
ence the reduction procedure of the time-stepping scheme using the discrete
null space method with nodal reparametrisation. Using the same randomly
created forces, (3.6) and (3.12) are still equivalent. This has been verified nu-
merically by simulating the stochastic dynamics of a pendulum. However, the
corresponding results will be presented elsewhere and this work is restricted
to the deterministic setting.

Jerry: Perhaps some rewording is needed as it is not clear

that the exposition that follows uses the stochastic setting

or not. Maybe with "Stochastic Forces" use a Remark or a

footnote.

ToDo

Boundary Conditions. In the next step, the boundary conditions q(t0) =
q0, q̇(t0) = q̇0 and q(tN) = qN , q̇(tN) = q̇N have to be formulated in the dis-
crete setting. Let q00 ∈ C be a fixed reference configuration, relative to which
the initial configuration is computed as q0 = F (u0, q00). To prescribe an initial
configuration at t0, one can request u0 = u0. If an absolute reparametrisation
is used, i.e. (3.9) is changed to qn = F (un, q00), then uN = uN defines the final
configuration qN uniquely (see Sections 7.2 and 7.3 for examples). However,
for the relative reparametrisation (3.9), n−m independent final configuration
conditions have to be identified with the function D : Q × Q → Rn−m de-
pending on the specific system under consideration (see §7.1 for an example).
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Since in the present formulation of constrained forced discrete variational dy-
namics on Q × Q, velocities are not properly defined, the velocity conditions
have to be transformed into conditions on the conjugate momenta, which are
defined at each and every time node using the discrete Legendre transform.
Three different versions have been defined in Leyendecker et al. [2008b] for the
conservative case. Now, the presence of forces at the time nodes has to be in-
corporated into that transformation leading to the constrained forced discrete
Legendre transforms Fcf−Ld : Q × Q → T ∗Q and Fcf+

Ld : Q × Q → T ∗Q
reading

Fcf−Ld : (qn, qn+1) 7→ (qn,p
−
n )

p−n = −D1Ld(qn, qn+1) +
1

2
GT
d (qn) · λn − f−n

Fcf+

Ld : (qn−1, qn) 7→ (qn,p
+
n )

p+
n = D2Ld(qn−1, qn)− 1

2
GT
d (qn) · λn + f+

n−1.

(3.13)

As in the conservative case, the time-stepping scheme (3.6)1 can be interpreted
as matching of momenta p+

n − p−n = 0 such that along the discrete trajectory,
there is a unique momentum at each time node n which can be denoted by
pn. However, just as the appearance of Lagrange multipliers is avoided in
the discrete equations of motion (3.12), their presence in the initial and final
momentum conditions complicates matters unnecessarily. Even though they
can be related to the discrete trajectory via

λn = RT
d (qn) ·

[
D1Ld(qn, qn+1) +D2Ld(qn−1, qn) + f+

n−1 + f−n
]
, (3.14)

where
Rd(qn) = GT

d (qn) ·
(
Gd(qn) ·GT

d (qn)
)−1

, (3.15)

the following versions of the discrete Legendre transforms do not use Lagrange
multipliers. The projected discrete Legendre transforms QFcf−Ld : Q × Q →
η
(
T ∗

qn
C
)

and QFcf+
Ld : Q×Q→ η

(
T ∗

qn
C
)

read

Qp−n = Q(qn) ·
[
−D1Ld(qn, qn+1)− f−n

]
Qp+

n = Q(qn) ·
[
D2Ld(qn−1, qn) + f+

n−1

]
,

(3.16)

where Q(qn) is given by

Q = In×n −GT
d ·
[
Gd ·M−1 ·GT

d

]−1
Gd ·M−1 (3.17)

and fulfils Q(qn) · GT
d (qn) = 0n×m. Note that for the constrained discrete

Legendre transforms and for the projected discrete Legendre transforms, the
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output is an n-dimensional momentum vector. In the projected case, it lies in
the (n−m)-dimensional submanifold η

(
T ∗

qn
C
)

being the embedding of T ∗
qn
C

into T ∗
qn
Q. Yet another possibility is to compute an (n − m)-dimensional

momentum vector by projecting with the discrete null space matrix. The
reduced discrete Legendre transforms PFcf−Ld : Q×Q→ T ∗U and PFcf+

Ld :
Q×Q→ T ∗U are given by

Pp−n = P T (qn) ·
[
−D1Ld(qn, qn+1)− f−n

]
Pp+

n = P T (qn) ·
[
D2Ld(qn−1, qn) + f+

n−1

]
.

(3.18)

This version is most appropriate to be used as a constraint in the optimisa-
tion problem, since it yields the minimal number of independent conditions,
while conditions formulated using (3.16) are redundant and (3.13) involves the
Lagrange multipliers.

Note that according to the range of the projection (3.17), Qpn fulfils the con-
straints on the momentum level; i.e.,

hd(qn,
Q pn) = G (qn) ·M−1 ·Q pn = 0 (3.19)

while this is not in general the case for pn. This question is superfluous for
Ppn.
Prescribed initial and final velocities of course should be consistent with the
constraints on velocity level. Using the standard continuous Legendre trans-
form FL : TC → T ∗C

FL : (q, q̇) 7→ (q,p) = (q, D2L(q, q̇)) (3.20)

yields momenta which are consistent with the constraints on momentum level
as well. With these preliminaries, the velocity boundary conditions are trans-
formed to the following conditions on momentum level:

p(t0) = D2L(q(t0), q̇(t0)) = p0 and p(tN) = D2L(q(tN), q̇(tN)) = pN ,

respectively. Then, p0 = p−0 and pN = p+
N are the corresponding conditions

on the discrete level which read in detail

P T (q0) ·
[
D2L(q0, q̇0) +D1Ld(q0, q1) + f−0

]
= 0

P T (qN) ·
[
D2L(qN , q̇N)−D2Ld(qN−1, qN)− f+

N−1

]
= 0.

(3.21)

The Discrete Constrained Optimisation Problem. Now the optimal
control problem for the constrained discrete motion can be formulated. To
begin with, an approximation

Bd(qn, qn+1,fn) ≈
∫ tn+1

tn

B(q, q̇,f) dt (3.22)
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of the continuous objective functional (2.2) has to be defined. As with the
approximations (3.2), the midpoint rule is used:

Bd(qn, qn+1,fn) = hB

(
qn+1 + qn

2
,
qn+1 − qn

h
,fn

)
. (3.23)

Jerry: Equations need punctuation throughout. ToDo

This yields the discrete objective function

Jd(qd,fd) =
N−1∑
n=0

Bd(qn, qn+1,fn), (3.24)

where the discrete configurations and forces are expressed in terms of their
corresponding independent generalised quantities ud = {un}Nn=0 and τd =
{τn}N−1

n=0 , respectively. Alternatively, a new objective function can be formu-
lated directly in the generalised quantities

J̄d(ud, τd) =
N−1∑
n=0

B̄d(un,un+1, τn) (3.25)

depending on the desired interpretation of the optimisation problem. In any
case, (3.24) or (3.25) has to be minimised with respect to ud, τd subject to the
constraints

u0 − u0 = 0

D(qN , q
N) = 0

P T (q0) ·
[
D2L(q0, q̇0) +D1Ld(q0, q1) + f−0

]
= 0

P T (qN) ·
[
D2L(qN , q̇N)−D2Ld(qN−1, qN)− f+

N−1

]
= 0

P T (qn) ·
[
D2Ld(qn−1, qn) +D1Ld(qn, qn+1) + f+

n−1 + f−n
]

= 0

(3.26)

for n = 1, . . . , N − 1.

Remark 3.2 (Dimension of the constrained optimisation problem). The use
of the discrete null space method with nodal reparametrisation yields a con-
strained optimisation problem of minimal possible dimension: the optimisa-
tion of (3.24) or (3.25) subject to (3.26) includes 2N(n − m) variables and
(N + 2)(n − m) constraints. In contrast to that, the optimisation problem
resulting from the Lagrange multiplier formulation involves N(2n + m) un-
knowns and (N + 2)(n + m) constraints (this are 3Nm more variables and
(N + 2)2m more constraints). Of course, this influences the computational
costs substantially.
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4 Optimal Control for Rigid Body Dynamics

Figure 4.1: Configuration of a rigid body with respect to an orthonormal frame
{eI} fixed in space.

Jerry: For me the picture needed to be rotated by 90

degrees, so I did that. One could also fix the original eps

figures, but I do not have them, so could not do it that way.

The font for the di in the figure does not match the text,

where bold italic is used. Also, the φ in the figure is

lightface, and in the text it is bold. In many other figures

later on, the figure fonts do not match the text fonts.

ToDo

The treatment of rigid bodies as structural elements relies on the kinematic
assumptions illustrated in Figure 4.1

A constrained formulation of rigid body dynamics (see Antmann [1995]; Betsch
and Steinmann [2001]) is used in this work. The time-dependent configuration
variable of a rigid body

q(t) =


ϕ(t)
d1(t)
d2(t)
d3(t)

 ∈ R12 (4.1)

consists of the placement of the centre of mass ϕ ∈ R3 and the directors
dI ∈ R3, I = 1, 2, 3 which are constrained to stay orthonormal during the
motion, see Figure 4.1. Of course this is equivalent to specifying that the
configuration manifold is the Euclidean group, SE(3), which is common in
other treatments, such as Marsden and Ratiu [1999]. These constraints on the
directors are called internal constraints, since they represent the underlying
kinematic assumptions. Then the body’s Euler tensor with respect to the
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centre of mass can be related to the inertia tensor J via

E =
1

2
(trJ)I − J , (4.2)

where I denotes the 3 × 3 identity matrix. The principal values of the Euler
tensor Ei together with the body’s total mass Mϕ are ingredients in the rigid
body’s constant symmetric positive definite mass matrix

M =


MϕI 0 0 0

0 E1I 0 0
0 0 E2I 0
0 0 0 E3I

 , (4.3)

where 0 denotes the 3× 3 zero matrix.

The angular momentum of the rigid body can be computed as

L = ϕ× pϕ + dI × pI , (4.4)

where summation convention is used to sum over the repeated index I.

Jerry: Einstein’s convention would have one index up and one

down.
ToDo

Null Space Matrix. An account of rigid body dynamics is given in Betsch
and Leyendecker [2006]; Leyendecker [2006] where also the null space matrix

Pint(q) =


I 0

0 −d̂1

0 −d̂2

0 −d̂3

 (4.5)

has been derived. Here â denotes the skew-symmetric 3 × 3 matrix with
corresponding axial vector a ∈ R3. For a single rigid body moving free in
space, no external constraints are present, therefore P (q) = Pint(q).

Nodal Reparametrisation. When the nodal reparametrisation of unknowns
is applied, the configuration of the free rigid body is specified by six unknowns
un+1 = (uϕn+1 ,θn+1) ∈ U ⊂ R3 ×R3, characterising the incremental displace-
ment and incremental rotation, respectively. Accordingly, in the present case
the nodal reparametrisation F : U ×Q → C introduced in (3.9) assumes the
form

qn+1 = Fd(un+1, qn) =


ϕn + uϕn+1

exp(θ̂n+1) · (d1)n
exp(θ̂n+1) · (d2)n
exp(θ̂n+1) · (d3)n

 , (4.6)
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where Rodrigues’ formula is used to obtain a closed form expression of the
exponential map, see e.g. Marsden and Ratiu [1999].

Actuation of the Rigid Body. Consider a single rigid body that is actu-
ated by generalised forces

τrb =

[
τϕ
τθ

]
∈ R6 (4.7)

consisting of a translational force τϕ ∈ R3 and a torque τθ ∈ R3. Assume that
the force is not applied in the centre of mass, but in material points of the
rigid body located at

%rb = %rbI dI (4.8)

away from the centre of mass. This results in a force τϕ applied at the centre
of mass and a torque %rb × τϕ + τθ that are given by[

τϕ
%rb × τϕ + τθ

]
= Crb(q) · τrb Crb(q) =

[
I 0
%̂rb I

]
∈ R6×6. (4.9)

As with (2.7), the redundant forces can be computed according to

f =


fϕ
f1

f2

f3

 = BT (q) · τrb ∈ R12, (4.10)

with

BT (q) = Pint(q) ·

[
I 0

0
1

2
I

]
·Crb(q) ∈ R12×6. (4.11)

A straightforward calculation shows

P T (q) · f = Crb(q) · τrb. (4.12)

The resulting reduced forces in (2.6) represent the effect of the applied forces
and torques τrb on the generalised degrees of freedom.

The same holds in the discrete setting, where the resulting reduced forces in
(3.12)

P T (qn) · (f+
n−1 + f−n ) = Crb(qn) ·

(
τrb

+
n−1 + τrb

−
n

)
(4.13)

represent the effect of the applied forces and torques at tn on the generalised
degrees of freedom.

Proposition 4.1. The above definition of the redundant left and right discrete
forces guarantees that, in the absence of a potential energy, the change in
angular momentum along the solution trajectory qd of (3.12) is induced only
by the effect of the discrete generalised forces.
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Proof. Computation of p+
n+1 and via p−n the discrete Legendre transforms

(3.13) and insertion into the definition of angular momentum (4.4) yields

Ln+1 −Ln
= ϕn+1 × pϕ+

n+1 + dIn+1 × pI+n+1 −ϕn × pϕ−n − dIn × pI
−
n

= ϕn+1 ×
(
fϕ

+
n

)
+ dIn+1 ×

(
fI

+
n

)
−ϕn ×

(
−fϕ−n

)
− dIn ×

(
−fI−n

)
= ϕn+1 × τϕ+

n + dIn+1 ×
(

1

2

(
%rbn+1 × τϕ+

n + τθ
+
n

)
× dIn+1

)
(4.14)

+ϕn × τϕ−n + dIn ×
(

1

2

(
%rbn × τϕ−n + τθ

−
n

)
× dIn

)
= ϕn+1 × τϕ+

n + %rbn+1 × τϕ+
n + τθ

+
n +ϕn × τϕ−n + %rbn × τϕ−n + τθ

−
n .

A straightforward calculation shows that all terms stemming from the kinetic
energy and the constraint forces cancel. �

Remark 4.2 (The Presence of Gravity). The computation in (4.14) is per-
formed for the case in which no potential energy is present. With an accel-
eration g ∈ R due to gravity in the negative e3-direction, the corresponding
potential reads

V (q) =



0
0

−Mϕg
0
...
0



T

· q. (4.15)

In this case, (4.14) yields

Ln+1 −Ln = ϕn+1 × τϕ+
n + %rbn+1 × τϕ+

n + τθ
+
n +ϕn × τϕ−n + %rbn × τϕ−n + τθ

−
n

− (ϕn+1 +ϕn)× h

2

 0
0

−Mϕg

 , (4.16)

meaning that the third component of the angular momentum changes only
according to the applied forces while the change in the first and second com-
ponent is influenced by gravity as well. In particular in the absence of any
external forces, this shows that the third component of the angular momentum
is conserved exactly.

5 Optimal Control for Kinematic Pairs

The constrained formulation of the dynamics of kinematic pairs and the subse-
quent reduction of the equations of motion via the discrete null space method
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with nodal reparametrisation has been introduced in Betsch and Leyendecker
[2006]; Leyendecker [2006] for conservative systems. The main ingredients will
be recalled here briefly. Furthermore it will be shown how the generalised
forces of a kinematic pair act on the respective bodies.

Remark 5.1 (Comparisons with Betsch and Leyendecker [2006] and Leyen-
decker [2006]). The idea of this procedure was originally investigated in the
framework of energy-momentum conserving time-integration of multibody dy-
namics in Betsch and Leyendecker [2006] and Leyendecker [2006]. However, a
slightly different point of view is taken here: In a kinematic pair, the motion
of the second body with respect to an axis fixed in the first body (or with
respect to a plane for the planar pair) is represented by the joint velocities.
This is in contrast to Betsch and Leyendecker [2006] and Leyendecker [2006],
where joint velocities represent the relative motion of the second body with
respect to the first body. If e.g. for a revolute pair, the first body performs
rotation only about the axis of relative rotation, the second body performs
the same rotation using the formulation of Betsch and Leyendecker [2006] and
Leyendecker [2006], while it remains motionless with the new kinematic as-
sumptions. The different interpretation of the motion of neighbouring bodies
is explained for each joint connection in the respective section. Eventually,
this different point of view leads to null space matrices and nodal reparametri-
sations that are slightly different from those given in Betsch and Leyendecker
[2006] and Leyendecker [2006]. As a consequence, the resulting simulation
tools for multibody dynamics can be extended to include actuating forces in
an easier way.

The coupling of two neighbouring links (body 1 and body 2) by a specific joint

J yields m
(J)
ext external constraints gext(q) ∈ Rm

(J)
ext where the configuration

variable

q =

[
q1

q2

]
∈ R24 (5.1)

consists of qα, α = 1, 2 of the form (4.1). The 24× 24 mass matrix of a kine-
matic pair consists of two blocks of the form (4.3). Here, J ∈ {R,P,C, S,E},
i.e. revolute, prismatic, cylindrical, spherical and planar couplings are consid-
ered. Depending on the number of external constraints m

(J)
ext they give rise to,

the degrees of freedom of the relative motion of one body with respect to the
other is decreased from 6 to r(J) = 6−m(J)

ext. The location of a specific joint in
the α-th body is characterised by coordinates %αi in the body frame {dαI } for
α = 1, 2

%α = %αi d
α
i . (5.2)
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Null Space Matrix. The total null space matrix associated with a kine-
matic pair can be calculated from

P (J)(q) =

[
Pint(q

1) 012×r(J)

Pint(q
2) · P 2,(J)

ext (q)

]
, (5.3)

where the internal null space matrix of each body is given in (4.5) and the

6× (6 + r(J)) matrix P
2,(J)
ext (q) accounts for the coupling induced by a specific

joint.

Nodal Reparametrisation. The redundant coordinates q ∈ R24 of each
kinematic pair J ∈ {R,P,C, S,E} may be expressed in terms of 6 + r(J) inde-
pendent generalised coordinates. When using a reparametrisation of unknowns
in the discrete null space method, relationships of the form

qn+1 = F (J)(µ
(J)
n+1, qn) (5.4)

are required, where

µ
(J)
n+1 = (u1

ϕn+1
,θ1

n+1,ϑ
(J)
n+1) ∈ R6+r(J)

(5.5)

consists of a minimal number of incremental unknowns in [tn, tn+1] for a specific
kinematic pair. In (5.5), (u1

ϕn+1
,θ1

n+1) ∈ R3×R3 are incremental displacements
and rotations, respectively, associated with the first body (see Section 4).

Furthermore, ϑ
(J)
n+1 ∈ Rr(J)

denotes incremental unknowns which characterise
the configuration of the second body relative to the axis (or plane in case of
the E pair) of relative motion fixed in the first body. In view of (5.1), the
mapping in (5.4) may be partitioned according to

q1
n+1 = F 1(u1

ϕn+1
,θ1

n+1, q
1
n)

q2
n+1 = F 2,(J)(µ

(J)
n+1, qn),

(5.6)

where F 1(u1
ϕn+1

,θ1
n+1, q

1
n) is given by (4.6) and F 2,(J)(µ

(J)
n+1, qn) remains to be

specified for each kinematic pair.

The null space matrices and nodal reparametrisations for the joints based on
the new kinematic assumptions (see Remark 5.1) and in particular a consistent
expression for the redundant forces that ensures consistency of momentum
maps are given in §5.1—§5.5.

Actuation of a Kinematic Pair. The actuation of kinematic pairs is
twofold. First of all, the overall motion of the pair can be influenced by
applying translational forces and torques τrb ∈ R6 to one of the bodies, say
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body 1. Any resulting change in the first bodies velocities will be transferred
to the second body via the constrained equations of motion. Secondly, the
relative motion of the pair can be influenced. Actuation of the joint connec-
tion itself by joint forces τ (J) ∈ Rr(J)

effects both bodies, where according
to “action equals reaction”, the resulting generalised forces on the bodies are
equal, but opposite in sign, see e.g. Bullo and Lewis [2004]. The dimension of
the joint force τ (J) is determined by the number of relative degrees of freedom
r(J) permitted by the specific joint.

Altogether, the generalised forces[
τrb
τ (J)

]
∈ R6+r(J)

(5.7)

act on the kinematic pair. The redundant forces can then be computed similar
to (2.7) as

f =

[
f 1

f 2

]
= BT (q) ·

[
τrb
τ (J)

]
∈ R24, (5.8)

with the 24× (6 + r(J)) matrix

BT (q) =

[
Pint(q

1) 0
0 Pint(q

2)

]
·


I 0 0 0

0
1

2
I 0 0

0 0 I 0

0 0 0
1

2
I

·
[
Crb(q

1) C1,(J)(q)

0 C2,(J)(q)

]
(5.9)

and the 6 × r(J) matrices Cα,(J)(q), α = 1, 2 being specified according to the
specific joint in use.

As with equation (4.12), the product of the transposed null space matrix and
the redundant forces yields the effect of the generalised forces on the gener-
alised degrees of freedom of the kinematic pair. The corresponding expression
of the actuation is given for each kinematic pair in the sequel.

5.1 Spherical Pair

Constraints. The S pair (Figure 5.1) prevents all relative translation be-
tween the two bodies, thus it entails three external constraints of the form

g
(S)
ext (q) = ϕ2 −ϕ1 + %2 − %1 = 0. (5.10)

The corresponding independent velocities are the first body’s translational
velocity ϕ̇1 and angular velocity ω1 and the second body’s angular velocity
ω2.
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Figure 5.1: Spherical pair.

Null Space Matrix. The null space matrix for the S pair follows directly
from (5.3) with

Pint(q
2) · P 2,(S)

ext (q) =


I −%̂1 %̂2

0 0 −d̂2
1

0 0 −d̂2
2

0 0 −d̂2
3

 . (5.11)

Nodal Reparametrisation. In the reduced set of incremental unknowns
(5.5) for the S pair, ϑ

(S)
n+1 = θ2

n+1 ∈ R3 represents the incremental rotation
vector pertaining to the second body. Then the mapping in (5.6)2 reads

q2
n+1 = F 2,(S)(µ

(S)
n+1, qn) =


ϕ1
n + u1

ϕn+1
+ exp(θ̂1

n+1) · %1
n − exp(θ̂2

n+1) · %2
n

exp(θ̂2
n+1) · (d2

1)n

exp(θ̂2
n+1) · (d2

2)n

exp(θ̂2
n+1) · (d2

3)n

 .
(5.12)

The null space matrix and nodal reparametrisation for the S pair do not differ
from those given in Betsch and Leyendecker [2006]; Leyendecker [2006].

Actuation of the Spherical Pair. A torque τ (S) ∈ R3 can be applied at
the spherical joint. Then the forces on each body are computed according to
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(5.8) with

C1,(S)(q) =

[
0
−I

]
C2,(S)(q) =

[
0
I

]
. (5.13)

The generalised forces effect the following actuation of the generalised degrees
of freedom of the spherical pair. In addition to the rigid body actuation, the
first body’s rotation is influenced by the joint torque, which also actuates the
relative rotation of the second body.

(
P (S)(q)

)T · f =

 τϕ
%rb × τϕ + τθ − τ (S)

τ (S)

 (5.14)

Proposition 5.2. This definition of the redundant left and right discrete forces
guarantees that the change of angular momentum along the solution trajectory
qd of (3.12) is induced only by the effect of the discrete generalised forces τrb.
In particular, it is conserved exactly, if the motion of the pair is induced by
shape changes only.

Proof. In proving the second statement, it is assumed that only the joint is
actuated, i.e. τrb = 0. Computation of p+

n+1 and via p−n the discrete Legendre
transform (3.13) and insertion into the definition of angular momentum (4.4)
yields

Ln+1 −Ln
= ϕ1

n+1 × p1
ϕ

+

n+1
+ d1

In+1 × p
1
I
+

n+1 +ϕ2
n+1 × p2

ϕ
+

n+1
+ d2

In+1 × p
2
I
+

n+1+

−ϕ1
n × p1

ϕ
−
n
− d1

In × p
1
I
−
n −ϕ

2
n × p2

ϕ
−
n
− d2

In × p
2
I
−
n

= d1
In+1 ×

(
−1

2
τ (S)
n

+ × d1
In+1

)
+ d2

In+1 ×
(

1

2
τ (S)
n

+ × d2
In+1

)
+ (5.15)

d1
In ×

(
−1

2
τ (S)
n

− × d1
In

)
+ d2

In ×
(

1

2
τ (S)
n

− × d2
In

)
= −τ (S)

n

+
+ τ (S)

n

+ − τ (S)
n

−
+ τ (S)

n

−
= 0.

The first statement follows by combining (5.15) and (4.14). �

Jerry: Prefer setting this display like that in (4.14) ToDo

5.2 Cylindrical pair

For the C pair (Figure 5.2), a unit vector n1 is introduced which is fixed in the
first body and specified by constant components n1

I with respect to the body
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Figure 5.2: Cylindrical pair.

frame {d1
I}

n1 = n1
Id

1
I . (5.16)

In addition to that for κ = 1, 2, two vectors

m1
κ = (m1

κ)Id
1
I (5.17)

are introduced such that {m1
1,m

1
2,n

1} constitute a right-handed orthonormal
frame. The motion of the second body relative to the axis n1 can be described
by r(C) = 2 degrees of freedom: translation along n1 and rotation about n1.
The translational motion along n1 may be characterised by the displacement
u2 ∈ R, such that

ϕ1 + %1 + u2n1 = ϕ2 + %2. (5.18)

For the subsequent treatment it proves convenient to introduce the vectors

sα = ϕα + %α (5.19)

for α = 1, 2.

Constraints. The C pair entails m
(C)
ext = 4 external constraint functions that

may be written in the form

g
(C)
ext (q) =


(m1

1)
T · (s2 − s1)

(m1
2)
T · (s2 − s1)

(n1)T · d2
1 − η1

(n1)T · d2
2 − η2

 , (5.20)
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where η1, η2 are constant and need be consistent with the initial conditions.
Besides being influenced by the independent velocities of the first body, the
second body’s motion is characterised by u̇2, θ̇2, where, in addition to u2 al-
ready introduced in (5.18), θ̇2 accounts for the angular velocity of the second
body relative to n1.

Remark 5.3 (Comparison with Betsch and Leyendecker [2006]; Leyendecker
[2006]). The assumption

ω2 = ω1 + θ̇2n1 (5.21)

used in Betsch and Leyendecker [2006]; Leyendecker [2006] induces the second
body to perform the same rotational motion as the first one and to additionally
rotate relative to it about the axis n1. In particular, the second body follows
the first bodies rotation about n1 if the relative velocity is zero. For example
a pure rotation of the first body about n1 would affect the second body, but
not vice versa according to (5.21). The new kinematic assumptions to be
introduced in (5.22) and (5.23) in combination with the new update formula
(5.25) completely decouple the bodies with respect to rotations about and
translations along n1. Therefore it is easier to apply joint actuations that lead
to momentum consistent dynamics.

Jerry: Above paragraph has forward references, which should

be avoided. Or, instead of ‘‘The new kinematic assumptions

(5.22)", say ‘‘The new kinematic assumptions to be introduced

in (5.22)’’, etc.

ToDo

Null Space Matrix. Specifically, the new relation between the angular ve-
locities reads

ω2 = I11 · ω1 + θ̇2n1. (5.22)

It ensures that the translation along and rotation about the axis n1 of one
body leaves the other body motionless.

Differentiating (5.18) with respect to time and taking into account (5.22) and
the assumption that a pure translation of body one along the axis of relative
translation n1 should not affect body two, yields

ϕ̇2 = I11 · ϕ̇1 +ω1× (%1 +u2n1)−
[
I11 · ω1

]
×%2 + u̇2n1 + θ̇2%2×n1, (5.23)

where I11 = I−n1⊗n1. The null space matrix for the C pair can be inferred
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from (5.3) with

Pint(q
2) · P 2,(C)

ext (q) =


I11 %̂2 · I11 − %̂1 − û2n1 n1 %2 × n1

0 −d̂2
1 · I11 0 n1 × d2

1

0 −d̂2
2 · I11 0 n1 × d2

2

0 −d̂2
3 · I11 0 n1 × d2

3

 . (5.24)

Nodal Reparametrisation. For the C pair, the configuration of the second
body with respect to the axis n1 can be characterised by ϑ

(C)
n+1 = (u2

n+1, θ
2
n+1) ∈

R2. Here θ2
n+1 accounts for the incremental rotation. The rotation of the

second body’s directors consist of this rotation and that part of the rotation
of body one which is not about the axis n1. Using the notation

R1,2 = exp(θ̂1
n+1) · exp(− ̂(n1

n ⊗ n1
n) · θ1

n+1),

it may be expressed via the product of exponentials formula

q2
n+1 = F 2,(C)(µ

(C)
n+1, qn) =

ϕ1
n + I11

n · u1
ϕn+1

+ exp(θ̂1
n+1) · [%1

n + (ū2
n + u2

n+1)n
1
n]−R1,2 · exp

(
θ2
n+1n̂

1
n

)
· %2

n

R1,2 · exp
(
θ2
n+1n̂

1
n

)
· (d2

1)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

2)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

3)n

 ,

(5.25)
where I11

n = I − n1
n ⊗ n1

n and ū2
n = n1

n · (s2
n − s1

n) denotes the translation of
the second body relative to the first one in the direction of the axis n1

n at time
tn.

Actuation of the cylindrical pair The two relative degrees of freedom
allowed by the cylindrical joint can be actuated by a translational force τ

(C)
ϕ ∈

R that acts in the direction of the axis n1 and a torque τ
(C)
θ ∈ R about n1.

Even if the joint is located away from the centres of mass, translational force
along n1 can not cause a relative rotation of the second body for this pair.
However, it causes the pair to rotate according to a torque (ϕ1 −ϕ2) × n1,
which is assigned to the first body. Using the matrices

C1,(C)(q) =

[
−n1 0

(ϕ1 −ϕ2)× n1 −n1

]
C2,(C)(q) =

[
n1 0
0 n1

]
, (5.26)
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consistent forces can be computed from (5.8). The actuation of the generalised
degrees of freedom reads

(
P (C)(q)

)T · f =


τϕ − τ (C)

ϕ n1

%rb × τϕ + τθ − τ (C)
θ n1

τ
(C)
ϕ

τ
(C)
θ

 . (5.27)

Note that the torque induced by a translational joint force τ
(C)
ϕ away from

the centre of mass does not show up here, since the corresponding rotation is
automatically determined by the solution of the coupled dynamical system.

Proposition 5.4. This definition of the redundant left and right discrete forces
guarantees that the change of angular momentum along the solution trajectory
qd of (3.12) is induced only by the effect of the discrete generalised forces τrb.
In particular, it is conserved exactly, if the motion of the pair is induced by
shape changes only.

Proof. For proving the second statement, it is assumed that only the joint is
actuated, i.e. τrb = 0 and computing p+

n+1 and via p−n the discrete Legendre
transforms (3.13), the definition of angular momentum (4.4) yields

Ln+1 −Ln
= ϕ1

n+1 × p1
ϕ

+

n+1
+ d1

In+1 × p
1
I
+

n+1 +ϕ2
n+1 × p2

ϕ
+

n+1
+ d2

In+1 × p
2
I
+

n+1+

−ϕ1
n × p1

ϕ
−
n
− d1

In × p
1
I
−
n −ϕ

2
n × p2

ϕ
−
n
− d2

In × p
2
I
−
n

= ϕ1
n+1 ×

(
−h

2
τ (C)
ϕn
n1
n+1

)
+

d1
In+1 ×

(
−h

4

(
τ

(C)
θn
n1
n+1 +

(
ϕ2
n+1 −ϕ1

n+1

)
× τ (C)

ϕn
n1
n+1

)
× d1

In+1

)
+

ϕ2
n+1 ×

(
h

2
τ (C)
ϕn
n1
n+1

)
+ d2

In+1 ×
(
h

4

(
τ

(C)
θn
n1
n+1

)
× d2

In+1

)
+ (5.28)

ϕ1
n ×

(
−h

2
τ (C)
ϕn
n1
n

)
+ d1

In ×
(
−h

4

(
τ

(C)
θn
n1
n +

(
ϕ2
n −ϕ1

n

)
× τ (C)

ϕn
n1
n

)
× d1

In

)
+

ϕ2
n ×

(
h

2
τ (C)
ϕn
n1
n

)
+ d2

In ×
(
h

4

(
τ

(C)
θn
n1
n

)
× d2

In

)
=
h

2
τ (C)
ϕn
n1
n+1 ×

(
ϕ1
n+1 −ϕ2

n+1 +ϕ2
n+1 −ϕ1

n+1

)
+

h

2
τ (C)
ϕn
n1
n ×

(
ϕ1
n −ϕ2

n +ϕ2
n −ϕ1

n

)
+

h

2

(
−τ (C)

θn
n1
n+1 + τ

(C)
θn
n1
n+1 − τ

(C)
θn
n1
n + τ

(C)
θn
n1
n

)
= 0.

The first statement follows by combining (5.48) and (4.14). �
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Jerry: Above display should be reset, as with (4.14). ToDo

5.3 Revolute pair

Figure 5.3: Revolute pair.

As for the cylindrical pair, use is made of the unit vector n1 given by (5.16),
which specifies the axis of rotation of the second body relative to the first one.

Constraints. The R pair (Figure 5.3) entails m
(R)
ext = 5 external constraint

functions which may be written in the form

g
(R)
ext (q) =

ϕ2 −ϕ1 + %2 − %1

(n1)T · d2
1 − η1

(n1)T · d2
2 − η2

 . (5.29)

Analogous to the cylindrical pair η1, η2 are constant and need be consistent
with the initial conditions.

Null Space Matrix. The null space matrix for the R pair can directly be
inferred from the previous treatment of the cylindrical pair where the column
in the null space of the C pair associated with u̇2 has to be eliminated, as
follows

P 2
int(q) · P 2,(R)

ext (q) =


I %̂2 · I11 − %̂1 %2 × n1

0 −d̂2
1 · I11 n1 × d2

1

0 −d̂2
2 · I11 n1 × d2

2

0 −d̂2
3 · I11 n1 × d2

3

 . (5.30)
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Nodal Reparametrisation. For the R pair the mapping F 2,(R)(µ
(R)
n+1, qn)

can be directly obtained from that of the C pair by fixing u2
n+1 = 0.

q2
n+1 = F 2,(R)(µ

(R)
n+1, qn)

=


ϕ1
n + u1

ϕn+1
+ exp(θ̂1

n+1) · %1
n −R1,2 · exp

(
θ2
n+1n̂

1
n

)
· %2

n

R1,2 · exp
(
θ2
n+1n̂

1
n

)
· (d2

1)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

2)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

3)n

 (5.31)

Jerry: Prededing equation is too wide. ToDo

Actuation of the Revolute Pair. The revolute joint can be actuated by
a torque τ (R) ∈ R about n1. It results in the following matrices in (5.8)

C1,(R)(q) =

[
0
−n1

]
C2,(R)(q) =

[
c0
n1

]
, (5.32)

as can be inferred from (5.26) by cancellation of the column corresponding to
the translational actuation force. The actuation of the generalised degrees of
freedom reads

(
P (R)(q)

)T · f =

 τϕ
%rb × τϕ + τθ − τ (R)n1

τ (R)

 . (5.33)

Proposition 5.5. This definition of the redundant left and right discrete forces
guarantees that the change of angular momentum along the solution trajectory
qd of (3.12) is induced only by the effect of the discrete generalised forces τrb.
In particular, it is conserved exactly, if the motion of the pair is induced by
shape changes only.

Proof. The proof is similar to that for the cylindrical pair; here one uses
τ

(C)
ϕ = 0 and τ

(C)
θ = τ (R). �

5.4 Prismatic Pair

In the case of the P pair (Figure 5.4), translational motion of the second body
relative to the first one may occur along the axis specified by the unit vector
n1, which as before is specified by (5.16).
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Figure 5.4: Prismatic pair.

Constraints. The P pair entails m
(P )
ext = 5 external constraint functions that

may be written in the form

g
(P )
ext (q) =


(m1

1)
T · (s2 − s1)

(m1
2)
T · (s2 − s1)

(d1
1)
T · d2

2 − η1

(d1
2)
T · d2

3 − η2

(d1
3)
T · d2

1 − η3

 , (5.34)

where ηi, i = 1, 2, 3 are constant and need be consistent with the initial con-
ditions. Again, m1

κ ∈ R3 and sα ∈ R3 are given by (5.17) and (5.19), respec-
tively. Furthermore, the kinematic constraint

ω2 = ω1 (5.35)

applies to the P pair.

Null Space Matrix. To get proper representations of the null space matrix
for the P pair, the previous treatment of the C pair requires the removal of θ̇2

and only u̇2 remains.

Pint(q
2) · P2,(P )

ext (q) =


I − n1 ⊗ n1 ϕ̂1 −ϕ2 n1

0 −(d̂2
1) 0

0 −(d̂2
2) 0

0 −(d̂2
3) 0

 (5.36)
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Nodal Reparametrisation. The mapping F 2,(P )(µ
(P )
n+1, qn) can be inferred

from the corresponding one for the C pair (5.25), by setting θ2
n+1 = 0. Accord-

ingly,

q2
n+1 = F 2,(P )(µ

(P )
n+1, qn) =

ϕ1
n + (I − n1

n ⊗ n1
n) · u1

ϕn+1
+ exp(θ̂1

n+1) · [%1
n − %2

n + (ū2
n + u2

n+1)n
1
n]

exp(θ̂1
n+1) · (d2

1)n

exp(θ̂1
n+1) · (d2

2)n

exp(θ̂1
n+1) · (d2

3)n

 ,
(5.37)

with incremental unknowns µ
(P )
n+1 = (u1

ϕn+1
,θ1

n+1, u
2
n+1) ∈ R3 × R3 × R and

ū2
n = n1

n · (s2
n−s1

n) denoting the translation of the second body relative to the
first one in the direction of the axis n1

n at time tn.

Actuation of the Prismatic Pair. The translational force τ (P ) ∈ R acts
in the direction of the axis n1. Its contribution to the bodies forces is given
by (5.8) with

C1,(P )(q) =

[
−n1

(ϕ1 −ϕ2)× n1

]
C2,(P )(q) =

[
n1

0

]
, (5.38)

as can be inferred from (5.26) by cancellation of the column corresponding to
the torque actuation. As in (5.27), the torque induced by a translational joint
force away from the centre of mass does not show up in the resulting actuation
of the generalised degrees of freedom

(
P (P )(q)

)T · f =

 τϕ − τ (P )n1

%rb × τϕ + τθ
τ (P )

 . (5.39)

Proposition 5.6. This definition of the redundant left and right discrete forces
guarantees that the change of angular momentum along the solution trajectory
qd of (3.12) is induced only by the effect of the discrete generalised forces τrb.
In particular, it is conserved exactly, if the motion of the pair is induced by
shape changes only.

Jerry: I suggest omitting the phrase ‘‘(geometric

phase)’’.
ToDo

Proof. The proof can be inferred from the that for the cylindrical pair by
setting τ

(C)
ϕ = τ (P ) and τ

(C)
θ = 0. �



5.5 Planar Pair 32

5.5 Planar Pair

Figure 5.5: Planar pair.

As before in the context of the cylindrical pair, for the E pair (Figure 5.5)
use is made of the orthonormal frame {m1

1,m
1
2,n

1}, with n1 = n1
Id

1
I and

m1
κ = (m1

κ)Id
1
I . In the present case, the motion of the second body in the

plane spanned by m1
1,m

1
2 can be characterised by r(E) = 3 degrees of freedom.

Specifically, the second body may rotate about the axis specified by n1 and
translate in the plane spanned by m1

1 and m1
2. The relative translational

motion may be accounted for by two coordinates (u2
1, u

2
2) ∈ R2, such that

s2 = s1 + u2
κm

1
κ. (5.40)

As before, sα = ϕα + %α for α = 1, 2.

Constraints. The E pair gives rise to m
(E)
ext = 3 external constraint functions

that may be written in the form

g
(E)
ext (q) =

(n1)T · (s2 − s1)
(n1)T · d2

1 − η1

(n1)T · d2
2 − η2

 , (5.41)

where η1, η2 are constant and need be consistent with the initial conditions.

Null Space Matrix. Differentiating (5.40) with respect to time and taking
into account (5.43) and Remark 5.3 yields

ϕ̇2 = I12 · ϕ̇1 +ω1×(%1 +u2
κm

1
κ)−

[
I11 · ω1

]
×%2 + u̇2

κm
1
κ+ θ̇2%2×n1, (5.42)
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with I12 = I −m1
1 ⊗m1

1 −m1
2 ⊗m1

2 and

ω2 = I11 · ω1 + θ̇2n1. (5.43)

With regard to (5.3), the null space matrix for the E pair is given by

Pint(q
2) · P 2,(E)

ext (q) =


I12 %̂2 · I11 − %̂1 − û2

κm
1
κ m1

1 m1
2 %2 × n1

0 −d̂2
1 · I11 0 0 n1 × d2

1

0 −d̂2
2 · I11 0 0 n1 × d2

2

0 −d̂2
3 · I11 0 0 n1 × d2

3

 .
(5.44)

Jerry: Consider introducing shorthand notation such as

Mκ = I − m1
κ ⊗ m1

κ to make these expressions (5.42) and

(5.44) more compact. Something like this is needed for

(5.45) below, which is too wide.

ToDo

Nodal Reparametrisation. In the present case the configuration of the
second body can be characterised by the incremental variables ϑ

(E)
n+1 = (u2

1n+1
, u2

2n+1
, θ2
n+1) ∈

R3. Accordingly, the mapping F
2,(E)
qn (µ

(E)
n+1) can be written in the form

q2
n+1 = F

2,(E)
qn (µ

(E)
n+1) =

ϕ1
n + (I12)n · u1

ϕn+1
+R1,2 · [%1

n + ((ū2
κ)n + u2

κn+1
)(m1

κ)n]−R1,2 · exp
(
θ2
n+1n̂

1
n

)
· %2

n

R1,2 · exp
(
θ2
n+1n̂

1
n

)
· (d2

1)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

2)n
R1,2 · exp

(
θ2
n+1n̂

1
n

)
· (d2

3)n

 .

(5.45)
Here, (ū2

κ)n = (m1
κ)n · (s2

n − s1
n) denotes the translation of the second body

relative to the first one in the direction of the axis (m1
κ)n at time tn.

Actuation of the Planar Pair. The three relative degrees of freedom al-
lowed by the planar joint can be actuated by a translational forces τ

(E)
ϕ1 , τ

(E)
ϕ2 ∈

R that acts in the directions of m1
1,m

1
2 and a torque τ

(E)
θ ∈ R about n1. In

(5.8), they are accounted for using

C1,(E)(q) =

[
−m1

1 −m1
2 0

(ϕ1 −ϕ2)×m1 (ϕ1 −ϕ2)×m2 −n1

]

C2,(E)(q) =

[
m1

1 m1
2 0

0 0 n1

]
.

(5.46)
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Jerry: Preceding and following displays are too wide ToDo

Similar to (5.27), the torque induced by a translational joint force away from
the centre of mass effects the generalised rotational degrees of freedom only
with respect to the allowed rotation around n1

(
P (E)(q)

)T · f =

τϕ − τ (E)
ϕ1 m

1
1 − τ

(E)
ϕ2 m

1
2

%rb × τϕ + τθ + (n1)
T ·
(
%2 ×

(
τ

(E)
ϕ1 m

1
1 + τ

(E)
ϕ2 m

1
2

))
· n1 − τ (E)

θ n1

τ
(E)
ϕ1

τ
(E)
ϕ2

− (n1)
T ·
(
%2 ×

(
τ

(E)
ϕ1 m

1
1 + τ

(E)
ϕ2 m

1
2

))
+ τ

(E)
θ


.

(5.47)

Proposition 5.7. This definition of the redundant left and right discrete forces
guarantees that the change of angular momentum along the solution trajectory
qd of (3.12) is induced only by the effect of the discrete generalised forces τrb.
In particular, it is conserved exactly, if the motion of the pair is induced by
shape changes only.

Proof. Computation of p+
n+1 and via p−n the discrete Legendre transforms

(3.13) and insertion into the definition of angular momentum (4.4) yields

Ln+1 −Ln
= ϕ1

n+1 × p1
ϕ

+

n+1
+ d1

In+1 × p
1
I
+

n+1 +ϕ2
n+1 × p2

ϕ
+

n+1
+ d2

In+1 × p
2
I
+

n+1+

−ϕ1
n × p1

ϕ
−
n
− d1

In × p
1
I
−
n −ϕ

2
n × p2

ϕ
−
n
− d2

In × p
2
I
−
n (5.48)

=
h

2

(
τ (E)
ϕ1n
m1

1n+1 + τ (E)
ϕ2n
m1

2n+1

)
×
(
ϕ1
n+1 −ϕ2

n+1 +ϕ2
n+1 −ϕ1

n+1

)
+

h

2

(
τ (E)
ϕ1n
m1

1n + τ (E)
ϕ2n
m1

2n

)
×
(
ϕ1
n −ϕ2

n +ϕ2
n −ϕ1

n

)
+

h

2

(
−τ (E)

θn
n1
n+1 + τ

(E)
θn
n1
n+1 − τ

(E)
θn
n1
n + τ

(E)
θn
n1
n

)
= 0.

�

Jerry: Consider resetting equation like (4.14). ToDo
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6 Optimal Control for Multibody Systems

In a kinematic chain or tree structured system, where N bodies are intercon-
nected by N − 1 joints, the multibody system consists of N − 1 pairs. The
configuration variable

q =

q
1

...
qN

 ∈ R12N (6.1)

is a generalisation of (5.1) and the corresponding 12N × 12N mass matrix
consists of block matrices of the form (4.3). The constraints, null space ma-
trices and nodal reparametrisation for the multibody system can be inferred
from the corresponding expressions for kinematic pairs given in the preceding
section.

Jerry: Refer to the preceding section instead? ToDo

Actuation of a Multibody System. As a generalisation of (5.7), the forces
and torques acting on the multibody system can be collected in

τrb
τ (J1)

...
τ (JN−1)

 ∈ R
6+

N−1P
i=1

r(Ji)

. (6.2)

The redundant forces for each body can be computed as

f =

f
1

...
fN

 = BT (q) ·


τrb
τ (J1)

...
τ (JN−1)

 ∈ R12N , (6.3)

with the 12N×(6+
N−1∑
i=1

r(Ji)) matrixBT (q) being the product of three matrices

as in (5.9). The first matrix corresponds to the internal constraints of each
body and consists of N blocks Pint(q

α), α = 1, . . . , N . The second 6N × 6N
diagonal matrix is an obvious extension of the one given in (5.9) consisting of
multiples of the identity matrix. The third matrix is given by concatenating
the matrices Crb(q

1) and C̄(Ji) for each joint Ji, i = 1, . . . , N − 1 into a 6N ×

(6 +
N−1∑
i=1

r(Ji)) matrix. The first 6N × 6 block consists of Crb(q
1) and a zero

matrix below. Corresponding to the joint Ji, the 6N × r(Ji) block C̄(Ji) has
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two nonzero subblocks. Let the α-th and β-th body be connected by the joint
Ji, then C1,(Ji)(q) and C2,(Ji)(q) occur in the rows corresponding to the forces
fα and fβ acting on the α-th and β-th body, respectively.[

Crb(q
1)

06(N−1)×6

∣∣ C̄(J1)
∣∣ . . .

∣∣ C̄(JN−1)

]
(6.4)

See §7.2 and §7.3 for examples of this matrix in the context of a tree structured
multibody system and a kinematic chain.

7 Numerical examples

7.1 Optimal Control of a Rigid Sphere

As a first example demonstrating the performance of the proposed procedure,
the actuation of a rigid sphere in three-dimensional space is investigated.

Set Up and Problem Statement. The sphere has radius r = 0.05 and
density of ρ = 27000. In the initial position, its centre of mass is located
at u0

ϕ = [R, 0, 0]T with R = 1 and the directors are aligned with the axes
of the inertial frame, thus θ0 = [0, 0, 0]T . The body is forced to move to
the position ϕN = [0, R, 2R]T while performing three full rotations around
the axis [−1, 1, 1]T /

√
3. Since the relative reparametrisation (3.9) is used,

uN represents the rotation of the body in [tN−1, tN ] and can not be used to
uniquely define the final configuration. The final orientation of the rigid body
is specified by prescribing that the directors are aligned with the axes of the
inertial frame at tN , i.e. dNI = eI , what can be transformed into three scalar
conditions. In this case, the function D describing the final configuration
condition in (3.26)2 reads

D(qN , q
N) =


I3×3 03×3 0 0
01×3 eT1 0 0
01×3 0 eT2 0
01×3 0 0 eT3

 · (qN − qN). (7.1)

The motion starts and ends at rest and takes places within N = 30 time-steps
of size h = 0.1. The objective function in use is of type (3.25) and represents
the control effort, it reads J̄d = h

∑N−1
n=0 ||τn||2. For the documented motion,

it takes the value J̄d = 533.5767.

Figure 7.1 shows the initial (blue) and final (red) configuration of the sphere
as well as the specified axis of rotation (dashed line).
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Optimal Motion of the Sphere. While the sphere moves in space, this
axis is translated parallel to itself. The motion of the sphere is depicted in
Figure 7.2 at every third time-step. The corresponding motion of the centre
of mass and evolution of the directors are depicted in Figure 7.3. The evo-
lution of the generalised forces, consisting of the translational forces and the
torques can be observed in Figure 7.4. According to the assumptions made,
the generalised forces are constant in each time interval. Figure 7.5 shows the
evolution of the kinetic energy and the components of the angular momentum.
Apparently the initial and final conditions of zero motion are met. The first
diagram in Figure 7.6 depicts the change of angular momentum in each time
interval while the second diagram reveals its consistency in the sense that as
shown in Proposition 4.1, the change of angular momentum equals exactly the
sum of the applied torques and the momentum induced by the translational
forces during that time interval. The minimisation of (3.25) subject to the
constraints (3.26) has been performed by the SQP solver fmincon in Matlab.
For the discrete Lagrangian, the midpoint approximation in (3.2) has been
used and the null space matrix (4.5), nodal reparametrisation (4.6) and input
transformation matrix (4.11) of the rigid sphere can be inferred from §4.

Jerry: Say some more about how this was implemented. Eg,

was it done in Matlab, C++?, what discrete Lagrangian was

used, what specific reparametrization was used, etc? --- ok

to refer to previous expressions, but the reader who starts

with an example (as many will do) needs some guidance.

ToDo

Remark 7.1 (Dimension of the constrained optimisation problem). Using
our method, the problem consists of 360 unknowns and 192 constraints. In
contrast to that, the Lagrange multiplier formulation yields 900 variables and
576 constraints.



7.1 Optimal Control of a Rigid Sphere 38

Figure 7.1: Rigid sphere: initial and final configuration and axis of rotation.

Figure 7.2: Rigid sphere: configuration at t = 3nh, n = 0, . . . , 10 (h = 0.1).
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Figure 7.3: Rigid sphere: motion of centre of mass and directors (h = 0.1).
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Figure 7.4: Rigid sphere: force and torque (h = 0.1).
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Figure 7.5: Rigid sphere: energy and components of angular momentum vector
L = LIeI (h = 0.1).
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7.2 Optimal Control of a Rigid Body with Rotors

For both, the fully actuated and the underactuated case, the minimisation of
(3.25) subject to the constraints (3.26) has been performed by the nag opt nlp sparse
function which is part of the NAG C library. The discrete midpoint Lagrangian
given in (3.2) has been used and the null space matrix, nodal reparametrisation
and input transformation matrix can be inferred from §5.3 and §6.

Fully Actuated Case—Set Up and Problem Statement. Inspired by
space telescopes such as the Hubble telescope, whose change in orientation
is induced by spinning rotors, a multibody system consisting of a main body
to which rotors are connected by revolute joints has been analysed. The rev-
olute joints allow each rotor to rotate relative to the main body around an
axis through its center which is fixed in the main body and are actuated by
torques τ (R1), τ (R2), τ (R3) ∈ R. No other force and torque is applied to this
tree-structured system, therefore in (6.4), the matrix reduces to

C1,(R1)(q) C1,(R2)(q) C1,(R3)(q)
C2,(R1)(q) 0 0

0 C2,(R2)(q) 0
0 0 C2,(R3)(q)

 , (7.2)

which is then used in (6.3) to compute the redundant forces on each body.

The goal is to determine optimal torques to guide the main body from the
initial orientation u0

θ = [0, 0, 0] into the final position uNθ = π
14

[1, 2, 3], where
the absolute reparametrisation qn = F (un, q00) is used instead of (3.9) here.
The motion starts and ends at rest. The manoeuvre time is T = 5 and the
time-step is h = 0.1, thus N = 50. As in the first example, the objective
function represents the control effort which has to be minimised. Due to the
presence of three rotors with non-planar axes of rotation, this problem is fully
actuated.

Fully Actuated Case—Problem Solution. Figure 7.7 shows the configu-
ration of the system at t = 0, 1, . . . , 5. The static frame represents the required
final orientation where the axes must coincide with the centres of the rotors
as the motion ends (see last picture). The optimal torques which are constant
in each time interval are depicted in Figure 7.8. They yield a control effort of
J̄d = 2.8242 · 106. Finally, Figure 7.9 illustrates the evolution of the kinetic
energy and a special attribute of the system under consideration. Due to a
geometric phase, the motion occurs although the total angular momentum re-
mains zero at all times. As shown in Proposition 5.5, the algorithm is able to
represent this correctly.
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Remark 7.2 (Dimension of the constrained optimisation problem). Using the
advocated method, the problem consists of 900 unknowns and 468 constraints,
rather than 6750 variables and 4524 constraints using the Lagrange multiplier
formulation.
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Figure 7.7: Rigid body with three rotors: configuration at t = 10nh, n =
0, . . . , 5 (h = 0.1).
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Underactuated Case. The same rest to rest manoeuvre is investigated for
the underactuated system where one momentum wheel has been removed.
Using the same time step and the same number of time steps as for the fully
actuated case, the reorientation manoeuvre depicted in Figure 7.10 requires
only slightly more control effort J̄d = 2.9168 · 106.
Consistency of angular momentum is observable from Figure 7.11. It also
shows that the energy does not evolve as symmetrically as for the fully actuated
problem. That means that acceleration phase and breaking phase are not
exactly inverse to each other. This becomes also obvious from Figure 7.12
showing the evolution of the optimal generalised forces.

Figure 7.10: Rigid body with two rotors: configuration at t = 10nh, n =
0, . . . , 5 (h = 0.1).
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Figure 7.11: Rigid body with two rotors: energy and components of angular
momentum vector L = LIeI (h = 0.1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1500

−1000

−500

0

500

1000

1500

t

to
rq

ue

 

 
τθ1

τθ2

Figure 7.12: Rigid body with two rotors: torque (h = 0.1).



7.3 Optimal Control of a Pitcher’s Motion 46

7.3 Optimal Control of a Pitcher’s Motion

As an example of biomotion in sports, the optimal pitch of an athlete is in-
vestigated in this section. For simplicity, a kinematic chain representing the
pitcher’s arm is considered including the collarbone, the upper and the fore-
arm (see Figure 7.13), where the single bodies are interconnected by joints and
actuated via control torques in the joints representing the muscle activation.

Set Up and Problem Statement. The first rigid body, representing the
collarbone, is assumed to be fixed in the inertial frame via a revolute joint
modelling the rotation of the torso around the e3-axis, thus the axis of the
first revolute joint is n1 = e3. Collarbone and upper arm are connected via
a spherical joint, representing the three-dimensional rotation of the shoulder.
A revolute joint serves as the elbow between upper and forearm allowing the
forearm to rotate around a prescribed axis n2 fixed in the upper arm.

The actuations via the muscles are modelled as torques acting in the joints.
Here, it is assumed that all degrees of freedom, that is the rotations of the
collarbone, the shoulder and the elbow, are directly steerable. There is a ro-
tational torque τ (S) ∈ R3 acting in the shoulder joint and two scalar torques
τ (R1), τ (R2) ∈ R acting in the first revolute joint and the elbow joint, respec-
tively. Observe from Figure 7.13 that the system has five generalised joint
coordinates θ1, . . . , θ5 ∈ R that constitute the degrees of freedom actuated by
the torques. The redundant forces on each body are given by (6.3) where the
matrix in (6.4) reduces, due the first body being fixed in space by the revolute
joint R1, to C2,(R1)(q) C1,(S)(q) 0

0 C2,(S)(q) C1,(R2)(q)
0 0 C2,(R2)(q)

 . (7.3)

The expressions for the nullspace matrix and nodal reparametrisation can be
inferred from §5.1, §5.3, and §6.

Jerry: Fonts in the figure are too big. ToDo

Remark 7.3. For the pitcher, the effect of the actuating torques in the joints
on the generalised degrees of freedom takes the form

P T (q) · f =

τ (R1) − (n1)
T · τ (S)

τ (S) − τ (R2)n2

τ (R2)

 . (7.4)

The control torque τ (S) in the spherical joint acts with different signs on the
collarbone and on the upper arm. Only (n1)

T · τ (S), the part of τ (S) in the
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Figure 7.13: The optimal pitch: model for the arm consisting of collarbone,
upper arm, and forearm.

direction of n1, influences the collarbone’s rotation, since the collarbone is
constrained to perform rotational motion around n1 only. Similarly, τ (R2) acts
on the upper and forearm with different signs, therefore it influences the three
generalised degrees of freedom in the shoulder by τ (R2)n2.

The pitcher is assumed to begin the motion with prescribed initial configu-
ration and zero velocity. Rather than prescribing final configurations for all
present bodies, a limited but not fixed final configuration is defined for the
hand position1, for example positive e2- and e3-position. Due to the human
body’s anatomy, the relative motion in each joint is limited. To obtain a real-
istic motion, each generalised configuration variable is bounded, for example
the forearm is assumed to bend in only one direction. In addition, the incor-
poration of bounds on the control torques is needed, since the muscles are not
able to create an arbitrary amount of strength.

The goal is to maximise the final momentum of the hand in e2-direction.
More specifically, the projected discrete Legendre transform (3.16) is used to
compute the discrete objective function Jd(qd,fd) = −eT2 ·

(
Qp+

N

)
hand

. During
the optimisation the final time is free, that means also the optimal duration
of the pitch is determined as a variable.

1Since the hand is not modelled as a separate rigid body within the system, it is assumed
to be located at the endpoint of the forearm.
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Problem Solution. The constrained minimisation has been performed with
the NAG C library function nag opt nlp sparse. Starting from an initial po-
sition of the joints as θ1

0 = θ2
0 = θ3

0 = θ4
0 = 0, θ5

0 = −π
4
, different solu-

tions for the optimal motion are obtained, depending on the initial guess in
use. In Figure 7.14 snapshots of a particular locally optimal motion are de-
picted with the optimal final time T = 0.415. The final configuration and
momentum of the hand are qhand = (0.008, 0.576, 0.453) and

(
Qp+

N

)
hand

=
(2.323, 24.502, −5.465), respectively. Starting from the initial configuration
shown in the first picture, the pitcher strikes his arm out, moves it rearwards,
pulls it above his head, before he finally moves his arm like a whip to obtain
the necessary swing to maximise the final momentum. The evolution of dis-
crete generalised coordinates and torques can be observed from Figure 7.15.
Figure 7.16 illustrates the consistency of angular momentum. Due to the pres-
ence of gravitation and the fixing of the chain in space by a revolute joint with
rotation axis e3, the only symmetry of the augmented discrete Lagrangian
(3.1) is rotation about e3. Therefore, the corresponding component of the
angular momentum L3 changes exactly according to the torque τ (R1), applied
in the supporting joint. The kinetic energy, which is increasing substantially
towards the end of the movement, is shown in Figure 7.17.

Remark 7.4 (Dimension of the constrained optimisation problem). Including
the free final time, the number of variables is 361 and the initial conditions and
dynamic constraints sum up to 180. In the Lagrange multiplier formulation,
one is faced with 3709 variables and 2412 constraints.

To obtain more realistic motions, the next step is to consider more complex
models that behave more realistically. For example, instead of modelling the
actuation of the limbs by external control torques, the interaction of the mus-
cles and the resulting muscle force can be modelled as well (as investigated in
Timmermann [2008]). Due to the constrained formulation of multibody dy-
namics, model extensions can easily be incorporated by coupling new bodies
to the system via constraints.
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t = 0.0 t = 0.044 t = 0.107

t = 0.123 t = 0.154 t = 0.261

t = 0.328 t = 0.344 t = 0.364

t = 0.384 t = 0.404 t = 0.415

Figure 7.14: The optimal pitch: snapshots of the motion sequence.



7.3 Optimal Control of a Pitcher’s Motion 50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−3

−2

−1

0

1

2

t

an
gl

e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−2

−1

0

1

2

3

t

an
gl

e 
(s

ho
ul

de
r j

oi
nt

)

torso
elbow

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−50

0

50

t

to
rq

ue

torso
elbow

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−50

0

50

t

to
rq

ue
 (s

ho
ul

de
r j

oi
nt

)

Figure 7.15: The optimal pitch: evolution of discrete generalised coordinates
and torques.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−5

−4

−3

−2

−1

0

1

2

3

4

5x 10−6

t

(L
3 n+

1−L
3 n) −

 (τ
(R

1)+

n
+τ

(R
1)−

n
)

Figure 7.16: The optimal pitch: Consistency of angular momentum.



8 Conclusion 51

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−100

0

100

200

300

400

500

600

700

t

en
er

gy

kinetic energy
potential energy
total energy

Figure 7.17: The optimal pitch: Evolution of kinetic, potential and total en-
ergy computed in terms of the projected conjugate momentum.

8 Conclusion

This paper proposes a new approach to the solution of optimal control prob-
lems for constrained mechanical systems via the combination of two recently
developed methods: the discrete null space method, which is suitable for the
accurate, robust and efficient time integration of such systems, and the optimal
control method DMOC.

DMOC is used to compute trajectories for a mechanical system that is op-
timally guided from an initial to a final configuration via external forces.
The given objective function is extremised subject to the reduced discrete
dynamic equations of the constrained mechanical system. These are derived
from the discrete constrained Lagrange-d’Alembert principle, then the dis-
crete null space method yields reduced time-stepping equations that are used
as constraints for the resulting optimisation problem.

The proposed method benefits from an easy derivation and implementation
of the constraint equation for the optimisation algorithm and ensures exact
constraint fulfilment and structure preserving properties of the computed so-
lutions. In particular, actuating forces being consistent with the specific joint
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constraints are given and angular momentum consistency of the resulting time-
stepping scheme is proved analytically and verified numerically with a satellite
reorientation problem and the optimisation of a pitcher’s motion.
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