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Abstract— Some animals rely on flapping a symmetrical pair
of jointed appendages to generate locomotion in a fluid. We
consider a simple model of the motion of such an animal
propelling itself via cyclic flapping strokes in a perfect fluid.
Furthermore, we determine which strokes yield the greatest
locomotive efficiency, defined as those which minimize the
control effort per unit distance traveled.

I. INTRODUCTION

Some animals rely on the flapping of a symmetrical pair
of articulated appendages to generate locomotion in a fluid,
such as labriform fish and frogs [6], [7]. In the aquatic
context, this propulsion mode is known as flapping aquatic
flight [29].

In order to provide a common analytical and computa-
tional framework in which to understand the fundamentals
of locomotion and design of these animals and possible
biologically-inspired robotic analogues, we take the point of
view of developing a family of simplified practical models,
beginning with the simplest initial models and moving to
more realistic, complex models [27]. For an initial model, we
assume an ideal, incompressible and irrotational fluid for all
time, allowing us to assume potential flow. Following [15],
[22], and [14], who studied the movements of carangiform
fish, we model a flapping animal as consisting ofN bodies
submerged in the fluid, connected via ball-and-socket or
hinge joints in order to obtain a system of articulated rigid
links.

Consider the symmetrical four-link flapper shown in
Fig. 1. As [23] first showed, a deforming body such as this

Fig. 1. A flapper in a fluid can propel itself from rest by going through
periodic shape changes, an example of holonomy drive.

flapper can move persistently from rest through a perfect
fluid, without having to produce vorticity in the fluid, by
going through periodic changes in shape, which we generally
call the stroke. Starting from rest, the multi-jointed animal
changes its shape by applying internal torques at its joints.
This shape actuation sets the surrounding fluid into motion,
and the coupling between the shape dynamics and the
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surrounding fluid causes the net locomotion of the animal;
the transfer of momentum between the animal’s multi-link
body and the fluid. This form of propulsion is fundamentally
different from, say, a flapping wing for aerial flight which
produces thrust in a viscous, rotational theory,

For the flapper pictured in Fig. 1, strokes are described
by closed loops in the shape space, the space of allowable
hinge angles. In potential flow, the net locomotion of the
flapper can be formulated as a function of the stroke curve
only. In other words, the net displacement of the flapper
after one stroke is a function of the geometry of the loop
in shape space only, and is independent of the instantaneous
velocity along the loop. Thus, the locomotion of the flapper is
an example of the mechanical concept of “holonomy drive”
seen in many other contexts [17], including self-propulsion
of microorganisms at low Reynolds number [1], [25].

A. Organization of Paper

We first describe the setting of the problem and write the
Lagrangian for the motion, which is the kinetic energy of
the fluid and articulated body. The net locomotion over one
cycle is then determined to be a function of stroke loops in
shape space. In order to determine the most efficient locomo-
tion, we formulate an optimization problem for finding the
flapping stroke loop which minimizes a certain functional.

II. THE MOTION OF A FOUR-LINK FLAPPER IN A
PERFECT FLUID

Consider an articulated body of four rigid links joined
by hinges, shown in Fig. 2 [21], [28]. A symmetrical
flapper is one which flaps with perfect bilateral symmetry.
A symmetrical flapper with only two or three links cannot
achieve net locomotion in a perfect fluid. This is because
no net locomotion can be achieved via reciprocal shape
changes, by which is meant a motion where the body changes
into a certain shape and goes back to the original shape by
going through the sequence in reverse. Non-reciprocal shape
changes are also required for locomotion in the low Reynolds
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Fig. 2. A symmetrical four-link flapper immersed in an inviscid, incom-
pressible, and irrotational fluid.



number realm [6]. Another reason four links are considered is
that they provide enough degrees of freedom to approximate
simple jointed appendage movements.

We approximate the four links as identical, having a
slender ellipsoidal geometry with semi-major axisa and
semi-minor axisb, where b/a � 1. For this initial study,
we assume neutral buoyancy. The links are considered to be
made of a homogeneous material of densityρs equal to the
fluid densityρf . We let the joints be placed a small distance
c away from the tips of the masses rather than at the tips
to avoid singularities in the model which are immaterial to
our analysis. We consider the joints to be equipped with
muscles which generate torques to achieve a desired stroke.
The four-link body is immersed in a fluid where we have
potential flow and we assume the fluid particles may slip
across the boundary of the body. Under these conditions, it is
well known in fluid mechanics that the equations governing
the motion of the body can be written without explicitly
incorporating the fluid variables. That is, we can write the
equations of motion of the body in terms of the body
variables only, leading to significant simplification of the
analysis and computation. It is perfectly appropriate in the
case of studying locomotion since we are mainly interested
in the location of the animal, not the fluid particles.

Consider a fixed inertial frame{e1, e2} which spans the
plane of motion as in Fig. 2. Likewise, consider four body-
fixed frames{b1,b2} attached to the center of mass of
each link. Referring to the figure, letθ2 denote the relative
orientation of the two inner links. Assuming symmetric
flapping, we letθ1 denote the relative orientation of the
two outer links with respect to the two inner links. These
variables, which describe the shape of the body, are the shape
variables. They describe only the relative orientation of the
connected links, that is, the articulated body’s shape. Let
(β, x, y) denote the orientation and location of one of the
bodies,B3, relative to the inertial frame. It is clear that the
configuration of the articulated body can be fully described
by the five variables(β, x, y, θ1, θ2).

There is an elegant geometric description of the motion
from the point of view of geometric mechanics [17]. Letting
g(t) = (β(t), x(t), y(t)), it can be shown that if the shape
variablesθ(t) = (θ1(t), θ2(t)) trace out a closed loop in
shape space from time 0 toT , then the net locomotion
achieved,g(T ) − g(0), is a function of this loop only (as
shown in the appendix). We show this schematically in
Fig. 3. Our goal is to use this property to investigate the loops
in shape space which achieve the most efficient locomotion.

A. The Solid-Fluid Lagrangian and the Equations of Motion

As we neglect gravity under the neutral buoyancy assump-
tion, the solid-fluid Lagrangian is the sum of the kinetic
energies of the solid links and the fluid,

L =
4∑

i=1

TBi
+ Tf . (1)

The velocity of the linkBi with respect to theBi-fixed
frame isξi = (Ωi, vi)T , whereΩi and vi = (vxi, vyi)T are
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Fig. 3. As the flapper completes one stroke loop of periodT in the shape
space of variables(θ1, θ2), a net locomotion of the body,g(T )− g(0), is
achieved.

the angular and linear velocities, respectively. For example,
Ω3 = β̇ and v3 = (ẋ cos β + ẏ sinβ,−ẋ sinβ + ẏ cos β)T .
The kinetic energy of the links can be written as

TBi =
1
2
ξT
i Is ξi , i = 1, 2, 3, 4, (2)

where Is is the 3 × 3 diagonal solid inertia matrix with
diagonal entries(I, m, m) whereI = m(a2 + b2)/4 is the
moment of inertia andm = ρsπab the mass of each ellipse.

For potential flow, the fluid velocity can be written as
the gradient of a potential function,u = ∇φ, whereφ is
the solution to Laplace’s equation∇2φ = 0 subject to the
boundary conditions that the fluid is at rest at infinity and can
slip across the boundary of the solids. Following a standard
procedure [4], [14], the kinetic energy of the fluid can be
written as

Tf =
1
2

4∑
i=1

4∑
j=1

ξT
i If

ij ξj , (3)

whereIf
ij is the3× 3 added inertia matrix.

The solid-fluid Lagrangian is then given by the total
kinetic energy

L =
1
2

4∑
i=1

4∑
j=1

ξT
i Iij ξj , (4)

where Iij = Is + If
ij . As we take the elliptical links to be

slender, we make the simplifying assumption that the added
inertia associated with a given link is not affected by the
presence of the other links, thenIij = I is the same for all
i, j. Furthermore,I is diagonal with entries(J,m1,m2) =
(I +If ,m+mf

1 ,m+mf
2 ), whereIf , mf

1 , andmf
2 are given

by (see, e.g., [19]),

If = ρf π(a2 − b2)2/8 , mf
1 = ρf πb2 , mf

2 = ρf πa2. (5)



Consequently, ((4) simplifies to

L =
1
2

4∑
i=1

ξT
i I ξi, (6)

The Lagrangian is a function of the five variables
(β, x, y, θ1, θ2), written in shorthand as(g, θ), whereg =
(g1, g2, g3). Therefore the equations of motion are given by
the following five forced Euler-Lagrange equations [18],

d

dt

(
∂L

∂ġi

)
− ∂L

∂gi
= 0, i = 1, 2, 3, (7)

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi, i = 1, 2, (8)

where the internal torquesτ(t) = (τ1(t), τ2(t)) are exerted
by actuators (or muscles) associated with the joints, by which
the flapper changes its shape.

B. The Flapping Stroke

Flapping flight results from a periodic change of shape.
A flapping stroke is a closed path in the shape space,
parametrized by time, as shown in Fig. 3. If we denote the
shape space asΘ, then a stroke is a curveγ(t), 0 ≤ t ≤ T ,
in Θ, whereT is the period of the stroke. When a flapper
has completed one stroke, it is back to its original shape, but
has translated a distanceD(γ) and may be rotated. In the
case of a symmetrical flapper, the rotation after each cycle
vanishes. Reparametrization with respect to time constitutes
an equivalence relation on the set of strokes; a stroke class
[γ] contains all strokes which determine the same loop inΘ.

To compute the flight distanceD(γ) over one flapping
cycle, we solve (7) for a given stroke. As shown in the
appendix, the flight distance is a function only of the loop
in Θ and is independent of the time parametrization, i.e.,
D(γ) = D([γ]).1 In other words, the distance traveled in
one cycle does not depend on the instantaneous speeds along
the loop. The net locomotion is an example of a geometric
phase and depends only on the geometry of the loopγ (see,
e.g., [15], [17]). However, the torque effort,

W (γ) =
∫ T

0

|τ |2 dt, (9)

does depend on the velocities along the loop, whereτ comes
from solving (8).

III. O PTIMAL FLAPPING

For fixed body parametersa, b, c, densitiesρs = ρf , and
stroke periodT , optimal flapping comes from minimizing
the torque effort per unit distance travelled,W (γ)/D([γ]).
Therefore we want to find strokesγ which minimizeδ(γ) =
W (γ)/D([γ]), a measure of inefficiency for the stroke.

1We note that due to the time reversibility of the problem, going through
the same stroke in reverse yields the same net distance travelled, but in the
opposite direction.

A. Admissible Shape Space

The appendages of the four-link flapper cannot self-
intersect. This imposes boundaries in the space of variables
(θ1, θ2). If we consider the limit of thin ellipses,b/a � 1,
then the admissible shape spaceΘ is the subset of the square
[−π, π]×[−π, π], such that|θ1|+|θ2| ≤ π as shown in Fig. 4.
Admissible strokes (assumed hereafter) are closed pathsγ
that lie in the admissible shape space.

B. Optimization

Our goal is to find the loopγ which minimizes δ(γ)
subject to the equations of motion (7-8). This is a standard
problem in optimization. By discretizingτ , g, and θ, it
becomes a finite dimensional nonlinear optimization prob-
lem, which can be solved to find the nearest local minimum
by standard methods like sequential quadratic programming,
used in this study [11], [12], [13], [24].

The shape variables(θ1, θ2) which trace outγ are given
by the input torques(τ1, τ2). Therefore, we seek the torque
profile τ(t) which minimizesδ(γ). The minimizer ofδ(γ)
can be computed numerically as follows. The loop which
minimizes δ(γ) is independent ofa, T , c or the densities
(since their ratio is 1), so we seta = T = ρs = 1 and
c = 0 without loss of generality. We pickb/a = 0.1. We
also pick a simple elliptical loopγinit as an initial guess for
the optimization scheme.

We find that there are many local minima, as is common in
optimization problems. By scanning over many initial guess
loop sizes and positions, we obtain an approximate globally
optimal stroke which is shown in Fig. 4. Snapshots of the
corresponding flapping motion are shown in Fig. 5. The
irregular shape of the optimal stroke is due to the nonlinear
nature of the problem. Another view of the optimal stroke is
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Fig. 4. The white region is the admissible shape space (no self-intersection
of the links). The globally optimal stroke is shown. The arrow indicates the
direction of motion. Tick marks are equally spaced in time and indicate the
instantaneous speeds along the stroke. The irregular shape of the optimal
stroke is due to the nonlinear nature of the problem.



Fig. 5. Snapshots of the optimal flapper shifted horizontally for visi-
bility. Going from the upper left to the lower right, the snapshots are
separated byT/8. The first and last snapshots are related by a verti-
cal translation, obtained by traversing the stroke loop in Fig. 4(a) in
a counterclockwise manner, starting and stopping at the point marked
with a dot. The full movie of the motion can be found on the web at
http://shaneross.com/movies/optimalflapper.mpg .

given by plotting the appendage tip trajectory viewed from
the middle joint of flapper in Fig. 6(a). Interestingly, from
Figs. 5 and 6(b) we see that the location of the middle joint
of the four-link flapper over the course of the stroke reaches
a maximum distance greater thanD(γ) and a minimum less
than the starting position before reachingD(γ) at the end.

IV. DISCUSSION AND EXTENSIONS

The optimal flapper found is optimal under the assump-
tions of the model, most significantly, that irrotational flow
prevails. Simple extensions of the model would involve
consideration of other small aspect ratiosb/a, non-identical
links, additional links, and, for purposes of steering, relax-
ing the assumption of symmetrical flapping. Enlarging the
class of flappers would allow for systematic exploration of
possibly superior flappers that may use quite different styles.

In the high Reynolds number realm applicable to birds,
insects, fish, and swimming mammals, one commonly en-
visages flapping locomotion occurring via mechanisms for
producing thrust and lift through vortex shedding and in-
teractions of the organism and its appendages with the
shed vorticity. Of course, animals in nature do interact with
vortices shed by the animal itself or generated by other
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Fig. 6. (a) The path of the appendage tips of the optimal flapper, with
respect to the middle joint (the center of the four-link flapper). Arrows
indicate the direction of appendage tip movement and filled circles indicate
the position of the tips at snapshots separated byT/15. (b) The distance
traveled by the middle joint as a function of one period for the optimal
flapping stroke.

moving organisms or fixed obstacles. Recent experimental
evidence shows that fish, for example, prefer to exploit
circulation in the flow to reduce their locomotion costs [16].
But the computations shown here demonstrate that vortex
shedding is not solely responsible for the locomotion, as
noted earlier in [23].

Nevertheless, understanding how these animals and their
man-made vehicle analogues behave in the presence of
vortices is essential to studying their locomotion and stability.
For this reason, the present study of locomotion in potential
flow is viewed as the first step in the generation of a family
of models that will eventually treat the interaction of multi-
link vehicles with self-generated vortices and vortices shed
by other objects. Therefore, another future extension is the
incorporation of vorticity in a model which maintains the
simplicity of the current one, i.e., including the effects of
the fluid without explicitly incorporating the fluid variables.
A model which incorporates the interaction of an articulated
body in an inviscid and incompressible fluid with point
vortices would be a good start [3], [20], [26]. This would
allow for the incorporation of a lift force to counteract
gravity, which needs to be incorporated into future models for
situations where neutral buoyancy is a poor approximation.
The evolution of the optimal flapping stroke as gravity and
vorticity are added could then be explored. For the study of
moderate Reynolds number flows, as in the case of insects,
meshing the current computational point of view with other
computationally efficient tools may be considered (e.g., the
viscous vortex method of [10]).

Future work should also consider other optimality criteria.
When moving in a peaceful environment, an autonomous
vehicle may desire to minimize control effort, as explored
here. But if attacked, for example, minimizing the time to
escape may become the measure of optimality. A rigorous
foundation for selecting locomotion optimality criteria de-
pending on the vehicle’s immediate environment is needed.
It would be of great benefit to incorporate simplified models
such as the one introduced here into an integrative view of
autonomous vehicle and animal motion, where the goal is to
understand the sensory and mechanical feedback loops [8].

Once we consider multiple self-propelling vehicles, future
work could consider how swarms of such vehicles may
be controlled [5] and utilized for tasks such as distributed
sensing [30], as well as the natural benefits that may result
from flocking behavior [9].
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APPENDIX

When the motion starts from rest, (7) can be conveniently
written in the following form [2], [14], [15],

ġ = −gA(θ)θ̇, (10)



whereg is an element of SE(2), the group of rotations and
translations inR2, related tog = (β, x, y) via

g =

 cos β − sinβ x
sinβ cos β y

0 0 1

 .

The matrixA is a function of the shape variables only. We
can view the net locomotion over a stroke,g(T )−g(0), as a
geometric phase associated with the closed loopγ : [0, T ] →
Θ, where, solving (10), we get

g(T ) = g(0) exp

(
−
∫ T

0

A(γ(t)) γ̇(t) dt

)
.

By Stokes’ theorem,

g(T ) = g(0) exp
(
−
∫

S

dA(θ)
)

.

whereS is the region ofΘ whose boundary is the loopγ
(see Figs. 3 and 4). Thus, the net displacement of the flapper
after one stroke is a function of the region in shape space
bounded by the loop, and is independent of the instantaneous
velocity along the loop.

REFERENCES

[1] Avron, J. E., Gat, O., Kenneth, O., 2004. Optimal swimming at low
Reynolds numbers.Physical Review Letters93, 186001.

[2] Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., Murray, R. M.,
1996. Nonholonomic mechanical systems with symmetry.Arch. Rat.
Mech. Anal.136, 21–99.

[3] Borisov, A. V., Mamaev, I. S., 2003. An integrability of the problem
on motion of cylinder and vortex in the ideal fluid.Reg. and Chaotic
Dynamics8, 163–166.

[4] Cendra, H., Marsden, J. E., Ratiu, T. S., 2001.Lagrangian reduction
by stages. Vol. 152 of Memoirs. American Mathematical Society,
Providence, RI.

[5] Chang, D. E., Shadden, S., Marsden, J. E., Olfati-Saber, R., 2003.
Collision avoidance for multiple agent systems, inProc. CDC 42,
539–543.

[6] Childress, S., Dudley, R., 2004. Transition from ciliary to flapping
mode in a swimming mollusc: flapping flight as a bifurcation inReω .
J. Fluid Mech.498, 257–288.

[7] Combes, S. A., Daniel, T. L., 2001. Shape, flapping and flexion: wing
and fin design for forward flight.J. Exp. Biol.204, 2073–2085.

[8] Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R.,
Lehman, S., 2000. How animals move: An integrative view.Science
288, 100–106.

[9] Dimock, G., Selig, M., 2003. The Aerodynamic Benefits of Self-
Organization In Bird Flocks, in41st AIAA Aerospace Sciences Meeting
and Exhibit, Reno, NV, Paper No. AIAA 2003–0608.

[10] Eldredge, J. D., 2005. Efficient tools for the simulation of flapping
wing flows, in 43rd AIAA Aerospace Sciences Meeting, Reno, NV,
Paper No. AIAA 2005–0085.

[11] Gill, P. E., Jay, L. O., Leonard, M. W., Petzold, L. R., Sharma, V.,
2000. An SQP method for the optimal control of large-scale dynamical
systems.J. Comp. Appl. Math.20, 197–213.

[12] Junge, O., Marsden, J. E., Ober-Blöbaum, S., 2005. Discrete optimal
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