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Abstract— An articulated body can propel and steer itself in a
perfect fluid by changing its shape only. Our strategy for motion
planning for the submerged body is based on finding the optimal
shape changes that produce a desired net locomotion; that
is, motion planning is formulated as a nonlinear optimization
problem.

I. INTRODUCTION

We study the locomotion of an articulated body that can
undergo shape changes and is immersed in a perfect fluid, as
shown in Figure 1. Starting from rest, the articulated body
can propel and steer itself in an irrotational fluid by changing
its shape. The goal of this work is to investigate the optimal
shape changes that produce a desired net locomotion.

Fig. 1. Fish swimming in an infinite potential flow: the body of the fish
is modeled as a system of articulated solid bodies.

Early efforts in developing mathematically-sound models
of swimming can be attributed to the work of Gray, Chil-
dress, Lighthill, Taylor and Wu; see [3], [10], [21] and [23].
Interest re-emerged over the past few years to understand
the mechanics of fish swimming and thereby enable novel
engineering applications such as the design of biologically-
inspired vehicles that move and steer bychanges of shape
rather than by direct propulsion. For recent experimental
studies of the shape kinematics of biological fish and its inter-
ation with the surrounding fluid, see, for example, [9], [14],
and [22]. See also [7] and [18] for their fundamental work
on the mathematical formulation of aquatic locomotion using
tools from geometric mechanics.

a) Swimming in Potential Flow:In [6], we modeled
the fish as an articulated body made of three rigid links, and
formulated the equations governing its motion in potential
flow using tools from geometric mechanics; namely, we
established the trajectories of the net rigid motiong(t)
as geometric phases, or holonomy, over closed curves in
the shape space (the space of allowable relative rotations
θ1(t) andθ2(t) between the links). We showed under these
idealized conditions, i.e.,in the absence of a vortex shedding
mechanism, that the fish can propel and steer itself by
changing its shape only. This result is important because,
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contrary to some common beliefs, it demonstrates that the
forces and moments applied on the fish body by shed vortices
are not solely responsible for the net locomotion. The net
locomotion in potential flow occurs due to the transfer of
momentum between the solid and the fluid: starting from
rest, the articulated body changes its shape by applying
internal torques at its joints. This shape actuation sets the
surrounding fluid into motion, and the coupling between
the shape dynamics and the surrounding fluid causes a net
locomotion of the solid.

b) Motion Planning: There is a need to establish a
rigorous foundation for the selection of patterns of shape
changes that produce a desired net locomotion.Motion
planning and control of self-propelled underwater robotic
vehicleshave been the subject of several recent studies, as
in [17], [2], [13] and [16]; see also references therein. These
studies however addresslocal motion planning and make the
restrictive and unrealistic assumption ofsmall shape changes,
hence the need for alternativeglobal methods.In the present
work, the assumption of small shape changes is not required,
and the problem of motion planning is formulated as an
optimization problemthat maximizes/minimizes certain cost
functions. That is, we ask the question:“what are the optimal
shape changes that achieve a desired net locomotion?”(see
also [12] for analogous ideas for the falling cat problem).
This approach is capable of capturing the complex behavior
of biological fish. Indeed, it is well known that biological
fish change their behavior depending on the conditions in
which they swim. When swimming peacefully, their concern
is to minimize their energy cost but, if attacked by a predator,
their energy concerns become secondary as they speed up to
escape.

c) Discrete Optimal Control:We use a new approach
proposed by [5] for the optimal control of mechanical
systems. The main idea is to discretize the Lagrange-
d’Alembert principle directly instead of the associated forced
Euler-Lagrange equations. The resulting discrete equations
then serve as constraints for the optimization of the given
cost functional. This approach respects, by construction,
the conserved quantities in the mechanical system, and is
particularly useful for the fish problem because the total
momentum is conserved. The setting of thediscrete optimal
control method within the general optimization framework is
discussed in [5]. For a different approach to motion planning
of the three-link fish, see [11] .

d) Organization of the Paper:First, §II describes the
general setting of the problem. We write the kinetic energy of
the solid-fluid system in§III, and we formulate the dynamics
using the Lagrange-D’Alembert variational principle in§IV.



Motion planning is established as a problem in discrete
optimal control in§V. The implementation and numerical
results are presented in§VI.

II. PROBLEM DESCRIPTION

e) Setting:Consider an articulated body formed of rigid
links and immersed in an infinitely large volume of an
incompressible fluid which is at rest at infinity, see Figure 1.
Assume that the fluid particles may slip along the boundaries
of the solid but do not allow cavities to form in the fluid
nor at the interface. It is well-known in fluid mechanics
that, under these conditions, the equations governing the
motion of the solid in an irrotational fluid can be written
without explicitly incorporating the ambient fluid(see, for
example, [6] for details). That is, the configuration space
of the solid-fluid system can be identified with that of the
submerged solid only.
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Fig. 2. A three-link mechanism submerged in a perfect fluid.

f) The Articulated Body:For concreteness, let the ar-
ticulated body and fluid occupy the two-dimensional plane
M ≡ R2 and letF be the region (or subset) ofM occupied
by the fluid. We consider the articulated body to be formed of
3 neutrally-buoyant, rigid ellipsesBi, i = 0, 1, 2, connected
together via hinge joints. More specifically, we assume that
the ellipses are made of a homogeneous material with density
ρs equal to that of the fluidρf , andBi has dimensionai along
its major axes andbi along its minor axes. The hinge joints
allow the linked ellipses to rotate relative to each other but
constrain their translational motion. We further assume that
the joints are equipped with motors that generate torquesτ1

and τ2 to setB1 andB2 in motion relative toB0. To study
the motion of the 3-link body, it is convenient to introduce an
orthonormal inertial frame{ek}, k = 1, 2, 3, where{e1, e2}
span the planeM ande3 is the unit normal toM . Likewise,
a body-fixed frame{bk} is attached at the center of mass of
each of the three solid links.

g) The Shape Space:Let θ1 and θ2 denote the rigid
rotations ofB1 andB2 relative toB0 as shown in Figure 2.
We refer to the space of admissible relative rotations(θ1, θ2)
as the shape spaceX. Clearly,(θ1, θ2) completely determine
the shape of the three-link body but not its position and
orientation relative to the inertial frame{ek}. The latter
information is given by (β, x, y), where β denotes the
orientation ofB0 and (x, y) the position of its mass center,

see Figure 2. Hence, the configuration of the articulated body
can be fully described using(θ1, θ2, β, x, y).

h) The Bundle Structure:Let R denote the space of
all admissible configurations. It can be shown thatR forms
a principal bundle over the shape spaceX, see [6]. That
is, roughly speaking, at each point(θ1, θ2) of the shape
space, one has a copy of the group of rigid motions SE(2)
parameterized by(β, x, y), see Figure 3.
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Fig. 3. The configuration spaceR has the structure of a principal bundle
over the shape spaceX, which allows the net locomotiong to be cast as a
geometric phase, or holonomy, over closed trajectories traced by the shape
variables(θ1, θ2).

This geometric picture is very convenient to address the
locomotion problem; namely, the net rigid motion(β, x, y)
achieved as a result of(θ1, θ2) tracing aclosedtrajectory in
the shape space. In this work, we investigate the problem of
motion planningor finding the most efficienttrajectories in
the shape space that produce a desired net locomotion.

i) Velocities of the Solid Links:Let Ωi and vi be,
respectively, the angular and translational velocities ofBi

expressed relative toBi-fixed frame. For conciseness, we
introduce ξi such thatξT

i = (Ωi, vi)T . For example, one
hasξT

0 = (Ω0, v0)T where

Ω0 = β̇ , v0 =
(

ẋ cos β + ẏ sinβ
−ẋ sinβ + ẏ cos β

)
. (1)

This notation is consistent with the group theoretic notation.
For a brief review of the planar rigid motion groupSE(2)
and its Lie algebrase(2), see, e.g., [7, Chapter 2].

j) The Dynamics:The equations governing the dynam-
ics of the submerged three-link fish (summarized in (10)
and (11)) are derived in [6] and recalled in§III and §IV.
Equations (10) and (11) can be written explicitly in terms of
the configuration variables(θ1, θ2, β, x, y) and the forcing
torques (also called actuators)τ1 and τ2 to give a system
of five second-order differential equations. The resulting
second-order system can be transformed into a system of
ten first-order equations of the forṁz = f(z, w) in terms
of the state variablesz = (θ1, θ2, β, x, y, θ̇1, θ̇2, β̇, ẋ, ẏ) and
the control variablesw = (0, 0, 0, 0, 0, τ1, τ2, 0, 0, 0). That is,
Equations (10) and (11) could be written in the well-known
state-space representationż = f(z, w) and g = (β, x, y)
(the net locomotiong is the output). However, the discrete



optimal control approach does not require such rewriting of
the equations.

III. K INETIC ENERGY

The kinetic energyT of the solid-fluid system can be
written as the sum of the energies of the solid linksTBi

and the energy of the fluidTF ; namely,

T =
2∑

i=0

TBi
+ TF . (2)

k) Kinetic Energy of the Solid Ellipses:The kinetic
energyTBi

can be written in the form

TBi =
1
2

ξT
i Is

i ξi , i = 0, 1, 2 . (3)

Here, Is
i is a 3 × 3 diagonal matrix with diagonal entries

(Ii,mi,mi) where Ii = mi(a2
i + b2

i )/4 is the moment of
inertia of Bi and mi = ρsπaibi is its mass. It is important
to recall that the links are neutrally buoyant, that is,ρs = ρf

and that the body-fixed frames are placed at the respective
mass centers.

l) Kinetic Energy of the Fluid:The kinetic energy of
the fluid TF is given in spatial representation by

TF =
1
2

∫
F

ρf |u|2 da , (4)

whereu is the spatial velocity field of the fluid and da is
the standard area element onR2. For potential flow, the fluid
velocity can be written as the gradient of a potential function
u = ∇φ, where the potentialφ is the solution to Laplace’s
equation∆φ = 0 subject to the boundary conditions{

∇φ · ni =
(
vi + Ωi ×Xi

)
· ni on ∂Bi

∇φ = 0 at ∞ .

Here, ni is a unit normal to∂Bi and Xi is the position
vector of a point on∂Bi relative to the respective mass center.
Under these conditions, one can show following a standard
procedure (see, for example, [6] and references therein) that
TF of (4) can be rewritten as

TF =
1
2

ξT
i If

ij ξj , i, j = 0, 1, 2 . (5)

The3×3 added inertiamatricesIf
ij depend on the geometry

and relative configurations(θ1, θ2) of the submerged ellipses
and are of the form

If
ij =

(
Jij dT

ij

dij Mij

)
, (6)

where Jij are scalars that represent added moments of
inertia due to the presence of the fluid,Mij are 2 × 2
symmetric matrices that represent added masses, anddij are
2× 1 arrays that reflect a coupling between the angular and
translational motions due to the hydrodynamic effects. To
this end, it should be clear that each added inertia matrix
If
ij is symmetric and, hence, has6 independent components.

Further, one also has thatIf
ij = If

ji. This symmetry reflects a
reciprocity in the effects two submerged ellipsesBi andBj

have on each other due to the hydrodynamic coupling.

m) Kinetic Energy of the Solid-Fluid System:By virtue
of (3) and (5), the kinetic energyT in (2) can be rewritten
as

T =
1
2

ξT
i Iij ξj , i, j = 0, 1, 2 , (7)

where Iii = Is
i + If

ii and Iij = If
ij for i 6= j. Note that,

although there is an analogy betweenIs
i and If

ij , they are
fundamentally distinct. For example, in translation, unlike the
body’s actual mass, the added mass depends on the direction
of the motion.
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Fig. 4. Forward motion of the neutrally buoyant articulated body due to
shape changesθ1 = − cos(t) andθ2 = sin(t).

0 10 20 30

0

10

20

30

0 5 10 15 20 25

0

2

4

6

8

x

y

t

(a)

(b)

Fig. 5. Turning motion of the neutrally buoyant articulated body due to
shape changesθ1 = 1− cos(t) andθ2 = −1 + sin(t).

IV. T HE LAGRANGE-D’A LEMBERT PRINCIPLE

For the neutrally buoyant articulated body, the Lagrangian
functionL is equal to the kinetic energyT given in (7), and
the Lagrange-d’Alembert variational principle requires that

δ

∫ t1

t0

L dt +
∫ t1

t0

(
τ1 · δθ1 + τ2 · δθ2

)
= 0 , (8)

for all variations(δθ1, δθ2, δβ, δx, δy) that vanish at the end
points t0 and t1. The associated equations of motion can
be written concisely as in (10-11). To see this, we first
introduce amomentum-likequantity µi associated to each
Bi and expressed relative toBi-fixed frame

µi =
3∑

j=1

Iijξj . (9)



We also define themomentumµs of the solid-fluid system
relative to theB0-fixed frame as followsµs = µ0+µ̃1+µ̃2,
whereµ̃α, α = 1, 2 correspond to the transformedµα from
their respective body-fixed frames to theB0-fixed frame.1

We then rewriteµα asµα = (Πα, Pα)T whereΠα andPα

denote, respectively, the angular and linear momenta ofBα in
theBα-fixed frame. Likewise, we writeµs = (Πs, Ps)T . To
this end, the equations associated with (8) can be expressed
in the form

Π̇s = Ps × v0 ,

Ṗs = Ps × Ω0 .
(10)

together with
Π̇1 = P1 × v1 + τ1 ,

Π̇2 = P2 × v2 + τ2 ,
(11)

That is, we have a determinate system of5 equations that
govern the motion

(
θ1(t), θ2(t), β(t), x(t), y(t)

)
. A deriva-

tion of a more general form of these equations is detailed
in [6].

n) Conservation of Total Momentum:Let µ̃s be the
total momentum written relative to the fixed inertial frame
{ek}. One can verify by taking the time derivative of̃µs

and invoking (10) that ˙̃µs = 0, which implies that̃µs is a
conserved quantity or constant of motion.

t
t = 0 t = T

Fig. 6. Turning gait over one periodT = 2π due to shape changes
θ1 = 1− cos(t) andθ2 = −1 + sin(t) (see Figure 5).

V. M OTION PLANNING

We investigate the following problem: among all possible
shape changes that steer the articulated body from a given
initial position and orientation to a desired final position and
orientation, find the optimal ones.

o) Solvability and Controllability: The problem
is to find the optimal trajectories inX that steer(
β(t0), x(t0), y(t0)

)
to

(
β(t1), x(t1), y(t1)

)
, see Figure 3.

For some given initial and final conditions, there may be no
trajectories that achieve the desired motion. In this case the
optimization problem has no solution.

In §VI, we provide numerical evidence that, starting
from rest, forward and steering motions

(
β(t), x(t), y(t)

)
can be achieved by prescribing periodic shape changes(
θ1(t), θ2(t)

)
and integrating (10), see Figures 4 and 5.

This suggests that the problem is controllable or, at least,
controllable in some finite regions of the configuration space.
For a rigorous proof of controllability, one needs to appeal
to the Ambrose-Singer theorem ([1]) which gives sufficient

1One cannot assert thatµs is the total momentum of the system, which
in this problem is indeterminate because the fluid has an infinite domain.
Traditionally, µs was known as the “impulse” (see [8, Chapter 6]).

conditions for every net motion to be realized (this theorem
is a restatement of a theorem of [4], now familiar to people
in control theory). Such undertaken, although very important,
is beyond the scope of the present paper.

p) The Optimization Problem:The shape variables
(θ1, θ2) are controlled by the input torques(τ1, τ2). There-
fore, we consider(τ1, τ2) to be the control variables and
(θ1, θ2, β, x, y) to be the state variables which we denote by
q for brevity. The optimization problem can then be stated
as follows. Given the boundary conditionsq(t0) = q0, and
q(t1) = q1, find (τ1, τ2) that minimize the cost function∫ t1

t0

C(q, q̇, τ1, τ2) dt (12)

subject to

δ

∫ t1

t0

L(q, q̇) dt +
∫ t1

t0

(τ1 · δθ1 + τ2 · δθ2) dt

+ p0 · δq0 − p1 · δq1 = 0 ,

(13)

for all arbitrary variations δq. That is, the Lagrange-
d’Alembert principle (8) is restated in (13) without the apriori
assumption that the variations vanish at the end pointst0
andt1. Rather, this condition is imposed using the boundary
constraints

δq0 = q(t0)− q0 = 0 , δq1 = q(t1)− q1 = 0, (14)

and their associated Lagrange multipliers

p0 =
∂L

∂q̇
|t0 , p1 =

∂L

∂q̇
|t1 .

q) The Discrete Optimization Problem:Traditional
methods in optimal control such as themultiple shooting
(see, e.g., [19]) or thecollocation methods(see [20]) rely
on a direct integration or fulfillement of (10-11) at certain
grid points. The corresponding solutions do not respect, in
general, the conservation laws that the equations of motion
satisfy, such as the conservation of total momentum in the
present problem. To circumvent this difficulty, we use a novel
method devised by [5] where the main idea is to discretize the
cost function (12) and the variational principle (13) directly
using global discretization of the states and the controls.
To this end, a pathq(t), where t ∈ [t0 = 0, t1 = 1], is
replaced by adiscrete pathqd : {0, h, 2h, . . . , Nh = 1},
N ∈ N. Here,qd(nh) := qn is viewed as an approximation
to q(tn = nh), n ∈ N andn ≤ N . Similarly, the continuous
torquesτα, α = 1, 2 are approximated by discrete torques
τα d such thatτα n = τα d(nh).

The cost function (12) is approximated on each time
interval [nh, (n + 1)h] by

Cd(qn, qn+1, τα n, τα n+1) ≈
∫ (n+1)h

nh

C(q, q̇, τα)dt ,

which yields the discrete cost function

Jd(qd, τα d) =
N−1∑
n=0

Cd(qn, qn+1, τα n, τα n+1) . (15)
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Fig. 7. Optimal solution that produce a net forward motion from an initial position(x0, y0) to a desired final position(x1, y1). The boundary conditions
are shown as solid dots. The solid lines correspond to the optimal solution while the dashed lines represent the initial guess.

The action integral (13) is approximated on each time
interval [nh, (n + 1)h] by a discrete Lagrangian

Ld(qn, qn+1) ≈
∫ (n+1)h

nh

L(q, q̇)dt .

We also approximate∫ tn+1

tn

τα ·δθα ≈ τ−α n ·δθα n+τ+
α n ·δθα n+1 , α = 1, 2 ,

whereτ−α n andτ+
α n are called left and right discrete torques,

respectively. The discrete version of (13) requires one to find
paths{qn}N

n=0 such that for all variations{δqn}N
n=0, one has

δ
N−1∑
n=0

Ld(qn, qn+1) +
N−1∑
n=0

2∑
α=1

τ−α n · δθα n + τ+
α n · δθα n+1

+ p0 · δq0 + p1 · δq1 = 0 .
(16)

The discrete variational principle (16) yields the following
equality constraints

D2Ld(qn−1, qn) + D1Ld(qn, qn+1) + τ+
n−1 + τ−n = 0 ,

p0 + D1Ld(q0, q1) + τ−0 = 0 ,

−p1 + D2Ld(qN−1, qN ) + τ+
N−1 = 0 ,

(17)

where D1 and D2 denote the derivatives with the re-
spect to the first and second argument, respectively, and
qn = (θ1 n, θ2 n, βn, xn, yn), τn = (τ1 n, τ2 n, 0, 0, 0), n =
1, . . . , N .

r) Summary and Remarks:The discrete nonlinear opti-
mization problem can be stated as follows: find the discrete
torques {τα n}N

n=0 and paths{qn}N
n=0 that minimize the

discrete cost function (15) subject to the nonlinear con-
straints (17) and the boundary conditions (14). We note the
following:

1) Additional constraints such as actuators limits can be
easily handled by this method: one would add to the
list of constraint equations (14) and (17) the inequality
constraints corresponding to the limits onτn.

2) The method presented here is suitable for optimization
over a fixed time interval[t0, t1]. Work on time optimal
control is under development and would be interesting
for the fish problem.

VI. N UMERICAL RESULTS

For simplicity, assume that the three ellipses are identical
(see Figure 2) and leta = 10, b = 1 c = 2 andρf = 1/π.
Further, assume that the added inertias associated with a
given ellipse are not affected by the presence of the other
ellipses.2 This assumption is capable of capturing qualita-
tively the correct dynamics (as demonstrated in [6]). To this
end, the inertia matrices are given byI11 = I22 = I33 = I
and Iij = 0, for i 6= j. In addition, I is a diagonal matrix
with non-zero diagonal entries

j = I +If , m1 = m+mf
1 , m2 = m+mf

2 , (18)

where the body moment of inertiaI and massm are given
in §III, while the added inertiasIf , mf

1 andmf
2 due to the

fluid effects are given by (see, for example, [15, Chapter 4])

If =
1
8
ρF π(a2−b2)2 , mf

1 = ρF πb2 , mf
2 = ρF πa2 .

(19)
s) Direct Numerical Integration:Starting from rest, we

prescribe periodic shape changes
(
θ1(t), θ2(t)

)
and compute

the resulting(β(t), x(t), y(t)) by integrating (10) using a
standard4th order Runge-Kutta integration scheme with
constant time steps.

Figure 4 shows a net forward motion of the three-link fish
in the (e1, e2)-plane due to shape changesθ1 = − cos(t)
and θ2 = sin(t). In Figure 5, the three-link fish is shown
to turn counterclockwise in the(e1, e2) plane due to shape
changesθ1 = 1 − cos(t) and θ2 = −1 + sin(t). Snapshots
of the turning maneuvers over one periodT = 2π of shape
changes are shown in Figure 6.

t) Implementation of the Discrete Optimization Scheme:
To approximate the relevant integrals in (12) and (13), we
use the midpoint rule; that is, in (15), we set

Cd(qn, qn+1, τα n, τα n+1) =

h C(
qn + qn+1

2
,
qn+1 − qn

h
,
τα n + τα n+1

2
) , α = 1, 2 ,

and, in (16), we use

Ld(qn, qn+1) = h L(
qn + qn+1

2
,
qn+1 − qn

h
) ,

2Note that this assumption is accurate when the ellipsesBi are placed a
large distance apart.
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solid lines correspond to the optimal solution while the dashed lines represent the initial guess.

while

τ−α n = τ+
α n =

h

4
(τα n + τα n+1) α = 1, 2 .

We solve the discrete optimization problem of finding
{τα n}N

n=0 and {qn}N
n=0 that minimize (15) subject to the

nonlinear constraints (17) and the boundary conditions (14)
using a built-in Matlab function forsequential quadratic
programming. This optimization method is only local: based
on the choice of an initial guess, the optimal solution is
determined by means of infinitesimal variations.

u) Optimization Results:In the examples presented in
this section, the goal is to minimize the control effort, hence
the cost function (12) is taken to be

J(q, τ1, τ2) =
∫ t1

t0

(τ2
1 + τ2

2 ) dt .

Figure 7 shows thelocally optimalsolution that produces a
net forward motion from(x0, y0) to (x1, y1) in the (e1, e2)-
plane. Interestingly, the optimal shape changes trace a tra-
jectory of non-regular shape because of the nonlinear nature
of the problem. It is worth noting that in order to obtain
the initial guesses in Figure 7, we take the trajectories of
Figure 4 over the time intervals[0, T ], T = 2π, and impose
small perturbations on these portions. Likewise, the initial
guess in Figure 8 corresponds to an arbitrary perturbation
on the trajectories of Figure 5 over[0, 2T ]. One does not
obtain a repeated pattern of shape changes when optimizing
over several time periods (as shown in Figure 8 over two
periods). This observation leads to the interesting question
whether to optimize over one period of shape changes or
over the whole time interval of the desired locomotion.

VII. C LOSING REMARKS

This paper considers an articulated body that can undergo
shape changes and is submerged in a perfect fluid. We
show that the submerged body is able to propel and steer
itself by changing its shape, and we investigate the optimal
shape changes that produce a desired net locomotion. This
problem is formulated as a constrained optimization problem
where the nonlinear constraints correspond to the equations
governing the motion of the solid-fluid system and are
defined via the Lagrange-d’Alembert variational principle.
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