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Abstract— An articulated body can propel and steer itselfina  contrary to some common beliefs, it demonstrates that the
perfect fluid by changing its shape only. Our strategy for motion  forces and moments applied on the fish body by shed vortices
gﬁan”e'n%r':grntheess‘:ﬁ;‘:ergggu%%dg's dZZii?j Ogef;”ﬁ;ggr;ho‘?[igﬁw?ﬁ;t are not solelyresponsible for the net locomotion. The net
is, rﬁotion pI%nning is F;ormulated as a nonlinear optimize{tion locomotion in potential flow pccurs due to_ the tra.nSfer of
problem. momentum between the solid and the fluid: starting from

rest, the articulated body changes its shape by applying
I. INTRODUCTION internal torques at its joints. This shape actuation sets the

We study the locomotion of an articulated body that casurrounding fluid into motion, and the coupling between
undergo shape changes and is immersed in a perfect fluid,the shape dynamics and the surrounding fluid causes a net
shown in Figure 1. Starting from rest, the articulated bodjocomotion of the solid.
can propel and steer itself in an irrotational fluid by changing  b) Motion Planning: There is a need to establish a
its shape. The goal of this work is to investigate the optimaigorous foundation for the selection of patterns of shape
shape changes that produce a desired net locomotion.  changes that produce a desired net locomotiblation
planning and control of self-propelled underwater robotic
vehicleshave been the subject of several recent studies, as
in [17], [2], [13] and [16]; see also references therein. These
studies however addrekscal motion planning and make the
restrictive and unrealistic assumptionsohall shape changes
hence the need for alternatigéobal methodsIn the present
work, the assumption of small shape changes is not required
Fig. 1. Fish swimming in an infinite potential flow: the body of the fishand the problem of motion planning is formulated as an
is modeled as a system of articulated solid bodies. optimization problenthat maximizes/minimizes certain cost

i _ . functions. That is, we ask the questiéwhat are the optimal

Early efforts in developing mathematically-sound modelgy,jhe changes that achieve a desired net locomotigage
of swimming can be attributed to the work of Gray, Chil-5,54 119] for analogous ideas for the falling cat problem).
dress, Lighthill, Taylor and Wu; see [3], [10], [21] and [23]. tig approach is capable of capturing the complex behavior
Interest re-emerged over the past few years to understagfpisiogical fish. Indeed, it is well known that biological
the mechanics of fish swimming and thereby enable novgly, change their behavior depending on the conditions in
engineering applications such as the design of biologicallyghich they swim. When swimming peacefully, their concern
inspired vehicles that move and steer dhyanges of shape s (5 minimize their energy cost but, if attacked by a predator,

rather than by direct propulsion. For recent experimentgy energy concerns become secondary as they speed up to

studies of the shape kinematics of biological fish and its inte[a'scape.

ation with the surrounding fluid, see, fqr example, [9], [14], c) Discrete Optimal Control:We use a new approach
and [22]. See also [7] and [18] for their fundamental Worli)roposed by [5] for the optimal control of mechanical
on the mathematical formulation of aquatic locomotion Usmgystems. The main idea is to discretize the Lagrange-
tools from geometric mechanics. _ d’Alembert principle directly instead of the associated forced
a) Swimming in Potential Flow:In [6], we modeled g1 agrange equations. The resulting discrete equations
the fish as an articulated body made of three rigid links, angle, serve as constraints for the optimization of the given
formulated the equations governing its motion in potentiglogs fynctional. This approach respects, by construction,
flow using tools from geometric mechanics; namely, Weng conserved quantities in the mechanical system, and is
established the trajectories of the net rigid motioff)  aricylarly useful for the fish problem because the total
as geometric phases, or holonomy, over closed Curves ig,mentm is conserved. The setting of thiscrete optimal
the shape space (the space of allowable relative rotatiopgno| method within the general optimization framework is

6.(t) andf() between the links). We showed under thesgjqc,ssed in [5]. For a different approach to motion planning
idealized conditions, i.ein the absence of a vortex sheddmgof the three-link fish, see [11] .

mechanism that the fish can propel and steer itself by d) Organization of the PaperfFirst, §Il describes the

changing its shape only. This result is important becausgenera) setting of the problem. We write the kinetic energy of
Control & Dynamical Systems, California Institute of Technology,th(? solid-fluid system iflll, and we fprmulate t_he _dyn:_;\mlcs
Pasadena, CA 9112&kanso@cds.caltech.edu using the Lagrange-D’Alembert variational principlegitv.




Motion planning is established as a problem in discretsee Figure 2. Hence, the configuration of the articulated body
optimal control in§V. The implementation and numerical can be fully described usin@, 62, 3, z, y).

results are presented §VI. h) The Bundle StructurelLet R denote the space of
all admissible configurations. It can be shown tiRaforms
[l. PROBLEM DESCRIPTION a principal bundle over the shape spate see [6]. That

dis, roughly speaking, at each poifé;,6;) of the shape

e) Setting:Consider an articulated body formed of rigi h £ th £ rigid : £
links and immersed in an infinitely large volume of an°Pace, one has a copy 0 the group ot gt motion$23
parameterized bys, x,y), see Figure 3.

incompressible fluid which is at rest at infinity, see Figure 1%
Assume that the fluid particles may slip along the boundaries

of the solid but do not allow cavities to form in the fluid ng(lﬁd yg;lon T

nor at the interface. It is well-known in fluid mechanics |

that, under these conditions, the equations governing the Net CD
motion of the solid in an irrotational fluid can be written Locomotion

without explicitly incorporating the ambient fluisee, for
example, [6] for details). That is, the configuration space
of the solid-fluid system can be identified with that of the
submerged solid only.

Shape Space (91, 6,)

Fig. 3. The configuration spac® has the structure of a principal bundle
over the shape spac®, which allows the net locomotion to be cast as a
geometric phase, or holonomy, over closed trajectories traced by the shape
variables(61, 62).

This geometric picture is very convenient to address the
locomotion problem; namely, the net rigid motida, x, y)
Fig. 2. A three-link mechanism submerged in a perfect fluid. achieved as a result @9, 6>) tracing aclosedtrajectory in
the shape space. In this work, we investigate the problem of
f) The Articulated Body:For concreteness, let the ar- motion planningor finding the most efficienﬂrajectories_in
ticulated body and fluid occupy the two-dimensional plané'e shape space that produce a desired net locomotion.
M = R2 and letF be the region (or subset) df occupied i) Velocities of the Solid Links:iLet ©; and v; be,
by the fluid. We consider the articulated body to be formed dfSPectively, the angular and translational velocities5pf
3 neutrally-buoyant, rigid ellipses;, i = 0, 1,2, connected gxpressed relative t@;-fixed frame. For conciseness, we
together via hinge joints. More specifically, we assume thdftroduceg; such that¢” = (;,v;)". For example, one
the ellipses are made of a homogeneous material with densi§S&5 = (€0, v0)" where ) o
ps equal to that of the fluig ¢, andB; has dimensiom; along Q = B, v = ( :v.co.sﬁ Ty sin 3 ) G
its major axes and; along its minor axes. The hinge joints —& sin  + g cos 3
allow the linked ellipses to rotate relative to each other burhis notation is consistent with the group theoretic notation.
constrain their translational motion. We further assume tha&or a brief review of the planar rigid motion gro¥(2)
the joints are equipped with motors that generate torgues and its Lie algebrae(2), see, e.g., [7, Chapter 2].
and, to set3; and By in motion relative to3,. To study j) The Dynamics:The equations governing the dynam-
the motion of the 3-link body, it is convenient to introduce arics of the submerged three-link fish (summarized in (10)
orthonormal inertial framde; }, k = 1,2, 3, where{e;,e2} and (11)) are derived in [6] and recalled §hl and §IV.
span the plan@/ andes is the unit normal ta\/. Likewise, Equations (10) and (11) can be written explicitly in terms of
a body-fixed framg b, } is attached at the center of mass ofthe configuration variable§;, 6, 3, z,y) and the forcing
each of the three solid links. torques (also called actuators) and » to give a system
g) The Shape Spacd:et #; and 6, denote the rigid of five second-order differential equations. The resulting
rotations of3; and B, relative to3, as shown in Figure 2. second-order system can be transformed into a system of
We refer to the space of admissible relative rotatighs¢z) ten first-order equations of the forf = f(z,w) in terms
as the shape spaée Clearly, (61, 62) completely determine of the state variables = (01,0, 5, z,y, 61,602, 5, %,y) and
the shape of the three-link body but not its position anthe control variablesy = (0,0, 0,0,0, 71, 72,0,0,0). That is,
orientation relative to the inertial framée,}. The latter Equations (10) and (11) could be written in the well-known
information is given by(5,z,y), where 8 denotes the state-space representation= f(z,w) andg = (5, z,y)
orientation of B, and (x,y) the position of its mass center, (the net locomotiory is the output). However, the discrete




optimal control approach does not require such rewriting of m) Kinetic Energy of the Solid-Fluid Systely virtue
the equations. of (3) and (5), the kinetic energ¥ in (2) can be rewritten

as
Ill. KINETIC ENERGY

1 .
The kinetic energyl’ of the solid-fluid system can be T = *fiT L&,  4,7=0,1,2, (7)
written as the sum of the energies of the solid liriKs,
and the energy of the fluid’x; namely,

2

wherel; = I3 +1/ andl; = I/, for i # j. Note that,
although there is an analogy betweb?nand H[j they are

_ Z Ty + Ty @ fundamentally distinct. For example, in translation, unlike the
— i ’ body’s actual mass, the added mass depends on the direction
o - ) ) ~ of the motion.
k) Kinetic Energy of the Solid EllipsesThe kinetic
energyl, can be written in the form Yo
- %@T]r;gi , i=0,1,2. (3)
Here, I is a3 x 3 diagonal matrix with diagonal entries -
(I;;m;,m;) where I, = m;(a? + b?)/4 is the moment of ~or
inertia of B; andm; = psma;b; is its mass. It is important r r r r r
to recall that the links are neutrally buoyant, thatis= pf ° * ® ® ® wox
and that the body-fixed frames are placed at the respective @
mass centers. B
[) Kinetic Energy of the Fluid: The kinetic energy of : 1
the fluid T’z is given in spatial representation by T~ T T T ]
1 9 0 .;: 1‘0 1‘5 2‘0 25
7y = 5 [oshufa, @ v

) ) ] ] ] Fig. 4. Forward motion of the neutrally buoyant articulated body due to
whereu is the spatial velocity field of the fluid andads  shape change$; = — cos(t) and 6 = sin(t).

the standard area element®A. For potential flow, the fluid
velocity can be written as the gradient of a potential function

u = V¢, where the potentiab is the solution to Laplace’s
equationA¢ = 0 subject to the boundary conditions 30

{ V(;S ‘n; = (Ui + Qz X Xz) ‘N, on [“)BZ 20 BB

Vo =0 at oo 10 i

Here, n; is a unit normal todB; and X; is the position ﬁ/\/\/\/
vector of a point or®B; relative to the respective mass center. 0o 5 1 15 2
Under these conditions, one can show following a standard® ®) t
procedure (see, for example, [6] and references therein) that

T of (4) can be rewritten as X
(a)
g ]1 5 i,j=0,1,2 . (5) Fig. 5. Turning motion of the neutrally buoyant articulated body due to
7 ’ T shape change; = 1 — cos(t) andfs = —1 + sin(t).

The 3 x 3 added inertiamatrices]lf. depend on the geometry

and relative configuration®s, ;) of the submerged ellipses IV. THE LAGRANGE-D'A LEMBERT PRINCIPLE
and are of the form For the neutrally buoyant articulated body, the Lagrangian
¥ Jij | dL 6 function L is equal to the kinetic enerd¥ given in (7), and
ij dij | M;; ) ®6) the Lagrange-d’Alembert variational principle requires that

t1 t1
where J;; are scalars that represent added moments of 5/ Ldt+/ (71,591 +T2.562) -0 8)
inertia due to the presence of the fluid/;; are 2 x 2 0 ’

symmetric matrices that represent added massesjarde  for all variations(d6;, 565, 53, , 6y) that vanish at the end

2 x 1 arrays that reflect a coupling between the angular anghints ¢, and ¢,. The associated equations of motion can
translational motions due to the hydrodynamic effects. Tge written concisely as in (10-11). To see this, we first
this end, it should be clear that each added inertia matriktroduce amomentum- -likeguantity 1; associated to each
Hf is symmetric and, hence, hésndependent components. 3. and expressed relative f@, -fixed frame

Further one also has thefl, = I7,. This symmetry reflects a

reciprocity in the effects two submerged ellipggsand B; i = Z][ijgj i (9)
have on each other due to the hydrodynamic coupling.



We also define thenomentuny.; of the solid-fluid system conditions for every net motion to be realized (this theorem
relative to theB3y-fixed frame as follows,s = po+pu1+us, is a restatement of a theorem of [4], now familiar to people
where i, a = 1,2 correspond to the transformed, from in control theory). Such undertaken, although very important,
their respective body-fixed frames to tify-fixed frame! is beyond the scope of the present paper.

We then rewriteu,, asu, = (Ily, P,)” wherell,, and P, p) The Optimization Problem:The shape variables
denote, respectively, the angular and linear momenta,oh  (6,,6,) are controlled by the input torqués;, »). There-
the B, -fixed frame. Likewise, we writgi, = (I, P,)T. To  fore, we consider(r;,72) to be the control variables and
this end, the equations associated with (8) can be expresg@d, 05, 8, x,y) to be the state variables which we denote by

in the form ) q for brevity. The optimization problem can then be stated
Iy = Psxwvg, (10) as follows. Given the boundary condition&,) = qo, and
P, = P.xQ. q(t1) = @1, find (71, 72) that minimize the cost function
together with t1 ’
’ - O(q.4,7,72) dt (12)
I, = PAxvi+11, . ¢
(11)  subject to 0

f[g = PgXU2+Tg,

t1 t1
That is, we have a determinate systemboéquations that 5/ L(q,q)dt + / (11 - 661 + 72 - 665) dt
govern the motion(6:(¢), 62(t), 3(t), z(t), y(t)). A deriva- to to (13)
tion of a more general form of these equations is detailed + po-dq0 — p1-6g1 = 0,
in [6].

for all arbitrary variationsdq. That is, the Lagrange-

n) Conservation of Total Momentuni:et 1, be the | 7 . . : C
total momentum written relative to the fixed inertial framed Alembert principle (8) is restated in (13) without the apriori

. . . L assumption that the variations vanish at the end paints
gilfj}insgljn;aplg)e;gﬁ?y—tagmv%htiZE ;:;npﬁieie{:;‘geisﬁz andt;. Rather, this condition is imposed using the boundary

’ . constraints
conserved quantity or constant of motion.

t 0qgo = q(tg) —qo =0, o =q(t1) —qg1 =0, (14
F=0 . T g0 = q(to) — qo @ =q(t1) —¢ (14)
and their associated Lagrange multipliers
\ ~_/ N oL oL
-~ \/ > pO_%‘to ) pl_%|t1 .

. _ _ _ g) The Discrete Optimization ProblemTraditional
Fig. 6.  Turning gait over one period = 2m due to shape changes mathods in optimal control such as tmeultiple shooting
01 =1 —cos(t) andfz = —1 + sin(t) (see Figure 5). .
(see, e.g., [19]) or theollocation methodgsee [20]) rely
on a direct integration or fulfillement of (10-11) at certain
V. MOTION PLANNING grid points. The corresponding solutions do not respect, in

We investigate the following problem: among all pOSSib|Eger_1eral, the conservation Iaws_ that the equations of motion
shape changes that steer the articulated body from a givelisfy, such as the conservation of total momentum in the
initial position and orientation to a desired final position andPr€Sent problem. To circumvent this difficulty, we use a novel
orientation, find the optimal ones. method devised by [5] where the main idea is to discretize the

0) Solvability and Controllability: The problem COSt function (1_2) an_d the variational principle (13) directly
is to find the optimal trajectories in¥ that steer YSING global discretization of the states and the Co_ntrols.
(B(to), z(to), y(to)) to (B(t1),x(t1),y(t1)), see Figure 3. To this end, a_patrq(t), wheret € [tg = 0,t; = 1], is
For some given initial and final conditions, there may be néePlaced by adiscrete pathgy : {0,h,2h,...,Nh = 1},
trajectories that achieve the desired motion. In this case thé € N- Here,qa(nh) := g, is viewed as an approximation
optimization problem has no solution. to ¢(t, = nh), n € Nandn < N.'S|m|larly, th'e continuous

In §VI, we provide numerical evidence that, starting!o'dueS7a, @ = 1,2 are approximated by discrete torques
from rest, forward and steering motion((t), z(t), y(t)) ~ Ted SUCh thalra, = 7o a(nh). _ .
can be achieved by prescribing periodic shape changesThe cost function (12) is approximated on each time
(61(t),62(t)) and integrating (10), see Figures 4 and sinterval [nh, (n + 1)h] by
This suggests that the problem is controllable or, at least, (nt1)h
controllable in some finite regions of the configuration space. Cy(qn, qn+1, Tan, Tant1) = / C(q,q,70)dt ,

For a rigorous proof of controllability, one needs to appeal nh
to the Ambrose-Singer theorem ([1]) which gives sufficientvhich yields the discrete cost function

10ne cannot assert that is the total momentum of the system, which N-1
in this problem is indeterminate because the fluid has an infinite domain.  J4(qq4, Tad) = Z Cd(qn, Qn+1Tan, Ta n+1) . (15)

Traditionally, s was known as the “impulse” (see [8, Chapter 6]). "0



-10 0

- 0
0 20 40 X 0 0.5 1 P 1 1 01

Fig. 7. Optimal solution that produce a net forward motion from an initial positian yo) to a desired final positiof1,y1). The boundary conditions
are shown as solid dots. The solid lines correspond to the optimal solution while the dashed lines represent the initial guess.

The action integral (13) is approximated on each time VI. NUMERICAL RESULTS
interval [nh, (n + 1)h] by adiscrete Lagrangian For simplicity, assume that the three ellipses are identical
(n+1)h ) (see Figure 2) and let =10, b=1c =2 andp; = 1/m.
Li(qn, Gny1) =~ /’ L(q,q)dt . Further, assume that the added inertias associated with a

given ellipse are not affected by the presence of the other
ellipses.? This assumption is capable of capturing qualita-

tively the correct dynamics (as demonstrated in [6]). To this
end, the inertia matrices are given by = oy = 33 =1

. . andI;; = 0, for ¢ # j. In addition,I is a diagonal matrix
— + 1] ’ ’
wherer,, andr., are called left and right discrete torques,\gith non-zero diagonal entries

respectively. The discrete version of (13) requires one to fin
paths{q, }_, such that for all variation$dg, }\_o, onehas j = I+I/, my = m+m!, my = m+m} , (18)

n=0"

We also approximate
tnt1
/ Ta'ée(x ~ T(;n'69a7z+7—(jn'59(x’n+l ) o = 172 )
t

n

N—-1 2 . . .
where the body moment of inertieand massn are given
S St 00+ T - i y g

in §l1I, while the added inertiag/, m{ andm] due to the
fluid effects are given by (see, for example, [15, Chapter 4])

N-1
o Z Ld(QanH) +

n=0 n=0 a=1

+po-dg0+p1-0g1 = 0. )
(16) 1f = g,()}-77(a2—l)2)27 m{ = prab?®, mg = prma’.
The discrete variational principle (16) yields the following (29)

equality constraints s) Direct Numerical IntegrationStarting from rest, we

DoLa(qn_1,0n) + D1La(Gn, gnas) + 75 +77 = 0, prescribe periodic shape chang@s(t), 6(t)) and compute
2La(4n-1,4n) 1LaGns o) Ty £ 7 the resulting(3(t), z(t),y(t)) by integrating (10) using a

po+DiLalao,a1) + 79 = 0, grandard4t™ order Runge-Kutta integration scheme with
—p1+ DaLa(gn-1,q8) +Tv_, = 0,  constant time steps.
(17) Figure 4 shows a net forward motion of the three-link fish
where D; and D, denote the derivatives with the re-in the (e1,ez)-plane due to shape changes = — cos(t)

spect to the first and second argument, respectively, aRfld 02 = sin(?). In Figure 5, the three-link fish is shown
G = (010,020, Brs Tns Yn)s Tn = (T1ns T2n,0,0,0), n = to turn counterclockwise in thée;,e2) plane due to shape

1,....N. changes); = 1 — cos(t) andf, = —1 + sin(t). Snapshots
r) Summary and Remark&he discrete nonlinear opti- f the turning maneuvers over one peritd= 27 of shape

mization problem can be stated as follows: find the discrefé'anges are shown in Figure 6.
torques {7 }\_, and paths{q,}~_, that minimize the t) Implementation of the Discrete Optimization Scheme:

n=0 R K .
discrete cost function (15) subject to the nonlinear conl® approximate the relevant integrals in (12) and (13), we
straints (17) and the boundary conditions (14). We note tHé¢se the midpoint rule; that is, in (15), we set
fOHOWIng:_ . i L. Cd(qn7Qn+1;Tan7Tan+1) =
1) Additional constraints such as actuators limits can be oIt Gntl Gt —dn Tan+ Tants -
easily handled by this method: one would add to the ( 2 ) h ) 5 ), a=12,
list of cqnstramt equathns (14) anq (17) the mequah%na in (16), we use
constraints corresponding to the limits op.
2) The method presented here is suitable for optimization Lalgn, qns1) = h L(qn tdnt1 Gnt1 — qn)
. . . . . nyin - d bl I
over a fixed time intervdl, t1]. Work on time optimal 2 h
control I.S under development and would be interesting 2Note that this assumption is accurate when the elliffeare placed a
for the fish problem. large distance apart.
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Fig. 8.

Optimal solution that steers and propels the system im0, yo) t0 (61,21, y1). The boundary conditions are shown as solid dots. The

solid lines correspond to the optimal solution while the dashed lines represent the initial guess.

while

- _ L+
Tan = T

h 1
an Z(Ta7l+7-un+1) [1]
[2]

We solve the discrete optimization problem of finding
{Tan}Y_, and {g,}2_, that minimize (15) subject to the
nonlinear constraints (17) and the boundary conditions (145 ]
using a built-in Matlab function forsequential quadratic [4]
programming This optimization method is only local: based 5]
on the choice of an initial guess, the optimal solution is
determined by means of infinitesimal variations. [6]

u) Optimization Resultsin the examples presented in
this section, the goal is to minimize the control effort, hence7
the cost function (12) is taken to be

t
! [8]
/t (rf +73)dt . [9]

Figure 7 shows thiocally optimalsolution that produces a [10]
net forward motion from(zg, yo) t0 (z1,y1) in the (e1, e2)-

: ] 11]
plane. Interestingly, the optimal shape changes trace a tr[
jectory of non-regular shape because of the nonlinear natuue]
of the problem. It is worth noting that in order to obtain
the initial guesses in Figure 7, we take the trajectories &3]
Figure 4 over the time interval®, '], T' = 27, and impose
small perturbations on these portions. Likewise, the initigl

L ) - 114]
guess in Figure 8 corresponds to an arbitrary perturbatigyy;
on the trajectories of Figure 5 ovéd, 27]. One does not
obtain a repeated pattern of shape changes when optimizi!
over several time periods (as shown in Figure 8 over two
periods). This observation leads to the interesting questigiv]
whether to optimize over one period of shape changes or
over the whole time interval of the desired locomotion.  [1g

a=12.

J(q,71,72)

VIl. CLOSING REMARKS [19]

This paper considers an articulated body that can under
shape changes and is submerged in a perfect fluid. We
show that the submerged body is able to propel and ste I
itself by changing its shape, and we investigate the optimt[g ]
shape changes that produce a desired net locomotion. Tiag]
problem is formulated as a constrained optimization problem
where the nonlinear constraints correspond to the equatiol!gg]
governing the motion of the solid-fluid system and are
defined via the Lagrange-d’Alembert variational principle.
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