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Abstract— We employ a recently developed new technique
for the numerical treatment of optimal control problems for
mechanical systems in order to compute optimal open loop
control laws for the reconfiguration of a group of formation
flying satellites. The method is based on a direct discretization
of a variational formulation of the dynamical constraints. We
extend the method by linearizing around a given nominal trajec-
tory and incorporate certain collision avoidance strategies. We
numerically illustrate the approach for a certain reconfiguration
maneuver in the context of future formation flying missions and
compare our method to a standard finite difference approach.

I. I NTRODUCTION

In the upcoming space missionsDarwin1 and Terrestrial
Planet Finder (TPF)2, a group of formation flying spacecraft
will build up an infrared interferometer in order to detect
and analyze planets outside our solar system. One of the
many challenges of these missions is to develop techniques
for controlling the spacecraft such that their relative motion
meets certain very demanding accuracy requirements: while
their mutual distance is on the order of several100 m, this
distance has to be kept constant up to an error of10−6 m

during a measurement period. In [2], numerical evidence has
been given that it is indeed possible to keep the spacecraft
in formation using a low thrust control strategy only.

Additionally, in regular time intervals, the group of space-
craft will have to be reconfigured such that another planetary
system can be analyzed. In light of the tight mass budget
of these missions it is of great interest to minimize the
propellant consumption in performing these reconfigurations.
In this paper we employ a recently developed new technique
[1] for the numerical treatment of optimal control problems
for mechanical systems in order to compute optimal control
laws for the reconfiguration of the spacecraft. The method
bases on a variational formulation of the mathematical model
of the mechanical system and uses a direct discretization
of this formulation instead of a discretization of the as-
sociated ordinary differential equations (the Euler-Lagrange
equations). This leads to a scheme that involves only half as
many unknowns as a standard reversible finite difference (or
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collocation) approach, while showing the same nice energy
conservation properties.

In our computations, we focus on the concrete setting of
the Darwin and TPF missions: the group of six spacecraft
will be placed in the vicinity of a certain periodic orbit near
the Lagrange pointL2. The group is required to acquire a
planar formation with each of the spacecraft being loacted
at the vertex of a regular hexagon in that plane, while their
common attitude must be aligned with the normal to the
plane.

An outline of the paper is as follows: based on the model
for the dynamics of the spacecraft that is introduced in
Section II we formalize the optimal control problem in
Section III. We recall the numerical method that is used for
its solution in Section V and finally present our numerical
results in Section VI.

II. T HE MODEL

We are dealing with a group ofn identical spacecraft.
Each spacecraft is modeled as a rigid body with six degrees
of freedom (position and orientation), i.e. its configuration
manifold isSE(3). We assume that each spacecraft can be
controlled in this configuration space by a force-torque pair
(F, τ), acting on its center of mass.

In the current mission concepts for Darwin and TPF,
it is planned to position the group of spacecraft in the
vicinity of a Libration orbit around theL2 Lagrange point.
Correspondingly, for each spacecraft the dynamical model
for the motion of its center of mass is given by thecircular
restricted three body problem:

Two large bodies (theprimaries, i.e. Sun and Earth in
our case) with massesm1 and m2 rotate on circles with
common angular velocityω around their center of mass. A
third body, the spacecraft, moves within their gravitational
potential without affecting the motion of the primaries. We
neglect gravitational forces between the spacecraft. Figure 1
shows the position of the primaries and the equilibria (the
Lagrange points) L1, . . . , L5 in the xy-plane of a rotating
coordinate system. In Figure 2 we plot a family of periodic
orbits (Halo orbits) in the vicinity of theL2 Lagrange point.
This family has been computed by a predictor corrector
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Fig. 1. Rotating coordiante system: location of the primaries and the
Lagrange points.

method on an initial orbit found by a shooting technique
(see [2]).
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Fig. 2. Family of periodic orbits in the circular restricted three body
problem in the vicinity of theL2-Lagrange point.

In a normalized, rotating coordinate system (cf. Figure 1),
the potential energy of the spacecraft at positionx =
(x1, x2, x3) ∈ R3 is given by

V (x) = − 1− µ

|x− (1− µ, 0, 0)|
− µ

|x− (−µ, 0, 0)|
, (1)

whereµ = m1/(m1+m2) is the normalized mass. Its kinetic
energy is the sum of

Ktrans(x, ẋ) =
1
2
((ẋ1 − ωx2)2 + (ẋ2 + ωx1)2 + ẋ2

3),

(assuming that is mass is equal to1 for simplicity) and

Krot(Ω) =
1
2
ΩT JΩ,

whereΩ ∈ R3 is the angular velocity andJ the inertia tensor
of the spacecraft (again, for simplicity, we normalizeJ = I).

III. T HE CONTROL PROBLEM

Our goal is to compute control laws(F (i)(t), τ (i)(t)),
i = 1, . . . , n, for each spacecraft, such that the group moves
from a given initial state(x(i), R(i), ẋ(i), Ṙ(i))n

i=1 into a
prescribed target manifold within a prescribed time interval.
In our application context, the target manifold will be defined
by prescribing the relative positioning of the spacecraft,
their common velocity as well as a common orientation.
We additionally require the resulting controlled trajectory to
minimize a given cost functional which typically is related
to the associated fuel consumption of the spacecraft.

More precisely, for their target state, we require the
spacecraft to be located in a planar regular polygonal con-
figuration with center on a Halo orbit. Letν ∈ R3 be a
given unit vector (the “line of sight” of the spacecraft).
The target manifoldM ⊂ TSE(3)n is the set of all states
(x(i), R(i), ẋ(i), Ṙ(i))n

i=1 such that

1) all spacecraft lie in a plane with normalν, i.e.

〈x(i) − x(j), ν〉 = 0, i, j = 1, . . . , n; (2)

2) within that plane, the spacecraft are located at the
vertices of a regular polygon with a prescribed center
on a Halo orbit. Letr0 ∈ R be a given radius and
x̄ ∈ R3 a certain point on a Halo orbit and let
ν⊥1 ⊥ ν⊥2 ∈ R3 be two perpendicular unit vectors that
are perpendicular toν. For i = 1, . . . , n we consider
the vector

z(i) = [ν⊥1 ν⊥2 ]T (x(i) − x̄) ∈ R2

and require that (
ẑ(i)

)n

= rn
0 eiϕ,

i = 1, . . . , n, where ẑ ∈ C denotes the complex
number associated to a vectorz ∈ R2 andϕ describes
the attitude of the polygon in the plane determined by
ν⊥1 andν⊥2 .
The idea of this formulation is not to prescribe a fixed
vertex on the polygon for each spacecraft but rather
to let the optimization process find the best possible
arrangement (if possible). In order to avoid that more
than one spacecraft attains the same vertex, we employ
a collision avoidance strategy as described in Section
IV);

3) all spacecraft have their “line of sight” aligned withν.
For simplicity we here impose a more restrictive con-
dition, namely that each spacecraft is rotated according
to a prescribed rotation matrixR(i)

0 , i.e. we require that

R(i) = R0, i = 1, . . . , n;

4) all spacecraft have the same prescribed linear velocity,

ẋ(i) = ẋ0, i = 1, . . . , n,



whereẋ0 will typically be determined on basis of the
Halo orbit under consideration, and they have zero
angular velocity, i.e.

Ṙ(i) = 0, i = 1, . . . , n.

As mentioned, in addition to controlling to the target
manifold, we would like to minimize the fuel consumption
of the spacecraft. Here we simply consider the cost function

J(F, τ) =
n∑

i=1

∫ tf

t0

|F (i)(t)|2 + |τ (i)(t)|2 dt, (3)

where F (t) = (F (1)(t), . . . , F (n)(t)) and τ(t) =
(τ (1)(t), . . . , τ (n)(t)) denote the force and torque functions
for the system.

IV. COLLISION AVOIDANCE

In order to avoid collisions between the spacecraft, we
follow two different approaches:

1) we add an artificial potential to the gravitational poten-
tial V (i.e. we change the dynamics of the spacecraft);

2) we add a penalty term to the cost function of the
problem.

A. Artificial potential

We consider an artificial potentialVa (cf. [4]) defined by

Va(x(i), x(j)) =
{

Ca (ln rij + d0/rij), 0 < rij < d0,
Ca (ln d0 + 1), rij ≥ d0,

(4)
whererij = |x(i)−x(j)| is the distance between thei-th and
the j-th spacecraft,Ca > 0 andd0 > 0 is a safety distance.
For rij < d0, the resulting forcefa = ∇Va acts such that
the i-th and thej-th spacecraft are repelled from each other,
while for rij ≥ d0 no artifical force is in effect.

In this case, the Lagrangian of the full system reads

L =
n∑

i=1

Ktrans(x(i), ẋ(i)) + Krot(α(i))

−
n∑

i=1

V (x(i))−
n∑

i,j=1
i6=j

Va(x(i), x(j)).

B. Penalty term

We use the term

P (x(i), x(j)) = Ca(exp (−50(rij − d0)2) + 5 exp (−2r2
ij)),

rij = |x(i)−x(j)|, in order to penalize a too close approach
of the spacecraft. The new cost function accordingly reads

J(F, τ) =
n∑

i=1

∫ tf

t0

|F (i)(t)|2 + |τ (i)(t)|2 dt

+
n∑

i,j=1
i6=j

∫ tf

t0

P (x(i)(t), x(j)(t)) dt.

V. THE NUMERICAL METHOD

In order to solve the above formulated optimal control
problem, we adapt a recently developed technique [1] that
relies on a direct discretization of a variational formulation
of the problem:

A mechanical system with configuration spaceQ is to be
moved on a curveq(t) ∈ Q, t ∈ [0, 1], from a state(q0, q̇0)
to a state(q1, q̇1) under the influence of a forcef . The curves
q andf shall minimize a given cost functional

J(q, f) =
∫ 1

0

C(q(t), q̇(t), f(t)) dt. (5)

If L : TQ → R denotes the Lagrangian of the mechanical
system, the motionq(t) of the system satisfies theLagrange-
d’Alembert principle, which requires that

δ

∫ 1

0

L(q(t), q̇(t)) dt +
∫ 1

0

f(t) · δq(t) dt = 0 (6)

for all variationsδq with δq(0) = δq(1) = 0.
Using a global discretization of the states and the controls

we directly obtain, via thediscrete Lagrange-d’Alembert
principle, equality constraints for the resulting finite dimen-
sional nonlinear optimization problem, which can be solved
by standard methods.

Discretization

We replace the state spaceTQ of the system byQ × Q

and a pathq : [0, 1] → Q by a discrete pathqd :
{0, h, 2h, . . . , Nh = 1} → Q, N ∈ N, where we view
qk = qd(kh) as an approximation toq(kh) [5]. Analogously,
we approximate the continuous forcef : [0, 1] → T ∗Q by a
discrete forcefd : {0, h, 2h, . . . , Nh = 1} → T ∗Q (writing
fk = fd(kh)).

The Discrete Lagrange-d’Alembert Principle

Based on this discretization, we approximate the action
integral in (6) on a time slice[kh, (k + 1)h] by a discrete
LagrangianLd : Q×Q → R,

Ld(qk, qk+1) := hL
(

qk+1+qk

2 , qk+1−qk

h

)
≈

∫ (k+1)h

kh

L(q(t), q̇(t)) dt,

and the virtual work by∫ (k+1)h

kh

f(t) · δq(t) dt ≈ h
fk+1 + fk

2
· δqk+1 + δqk

2

=
h

4
(fk+1 + fk) · δqk +

h

4
(fk+1 + fk) · δqk+1,

i.e. we have usedf−k = f+
k = h

4 (fk+1 + fk) as theleft and
right discrete forces.



The discrete version of the Lagrange-d’Alembert principle
(6) then requires one to find discrete paths{qk}N

k=0 such that
for all variations{δqk}N

k=0 with δq0 = δqN = 0, one has

δ
N−1∑
k=0

Ld(qk, qk+1) +
N−1∑
k=0

f−k · δqk + f+
k · δqk+1 = 0. (7)

This is equivalent to the system

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
k−1 + f−k = 0, (8)

k = 1, . . . , N − 1. These are theforced discrete Euler-
Lagrange equations.

Discrete Cost Function

We approximate the cost functional (5) on the time slice
[kh, (k + 1)h] by

Cd(qk, qk+1, fk, fk+1) := hC
(

qk+1+qk

2 , qk+1−qk

h , fk+1+fk

2

)
,

≈
∫ (k+1)h

kh

C(q(t), q̇(t), f(t)) dt,

yielding thediscrete cost functional

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1). (9)

Boundary Conditions

Finally, we need to incorporate the boundary conditions
q(0) = q0, q̇(0) = q̇0 and q(1) = q1, q̇(1) = q̇1 into our
discrete description. To this end, we link the description in
Q×Q to one inTQ using thediscrete Legendre transforms
Ff+Ld : Q × Q → T ∗Q and Ff−Ld : Q × Q → T ∗Q for
forced systems:

Ff+Ld : (qk−1, qk) 7→ (qk, pk),

pk = D2Ld(qk−1, qk) + f+
k−1 and

Ff−Ld : (qk−1, qk) 7→ (qk−1, pk−1),

pk−1 = −D1Ld(qk−1, qk)− f−k−1.

Using thestandard Legendre transformFL : TQ → T ∗Q

FL : (q, q̇) 7→ (q, p) = (q, D2L(q, q̇)),

this leads to the twodiscrete boundary conditions

D2L(q0, q̇0) + D1Ld(q0, q1) + f−0 = 0,

−D2L(qN , q̇N ) + D2Ld(qN−1, qN ) + f+
N−1 = 0.

The Discrete Constrained Optimization Problem

To summarize, after performing the above discretization
steps, we are faced with the following equality constrained
nonlinear optimization problem: Minimize

Jd(qd, fd) =
N−1∑
k=0

Cd(qk, qk+1, fk, fk+1) (10)

with respect tofd, subject to the constraintsq0 = q0, qN =
q1 and

D2L(q0, q̇0) + D1Ld(q0, q1) + f−0 = 0,

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
k−1 + f−k = 0,

−D2L(qN , q̇N ) + D2Ld(qN−1, qN ) + f+
N−1 = 0,

k = 1, . . . , N − 1.

Linearization

One major numerical problem in a direct application of
the numerical scheme described above (of any scheme, in
fact) lies in the fact that the scales of interest differ by a
factor of around109: the distance between the Sun and the
Earth is of the order of1011 m, while the distances between
the spacecraft is of the order of several100 m. When using
standard double-precision floating point arithmetic, rounding
errors will notably influence any corresponding computation.
On the other hand, we are interested in the relative positions
of the spacecraft with respect to each other only.

We will therefore perform our computations in a local
coordinate system by linearizing the system around a Halo-
orbit. Let (qH

k , q̇H
k ), k = 1, . . . , N , be points on given Halo-

orbit (a Halo-orbit of the family shown in Figure 2). Writing
q̃k = qk − qH

k , the linearized constraints for the discrete
optimization problem read

D1D2L(qH
0 , q̇H

0 )q̃0 + D2D2L(qH
0 , q̇H

0 )(q̇0 − q̇H
0 )

+D1D1Ld(qH
0 , qH

1 )q̃0 + D2D1Ld(qH
0 , qH

1 )q̃1 + f−0 = 0,

D1D2Ld(qH
k−1, q

H
k )q̃k−1 + D2D2Ld(qH

k−1, q
H
k )q̃k

+D1D1Ld(qH
k , qH

k+1)q̃k + D2D1Ld(qH
k , qH

k+1)q̃k+1

+f+
k−1 + f−k = 0,

for k = 1, . . . , N − 1, and finally

−D1D2L(qH
N , q̇H

N )q̃N

−D2D2L(qH
N , q̇H

N )(q̇N − q̇H
N ) + D1D2Ld(qH

N−1, q
H
N )q̃N−1

+D2D2Ld(qH
N−1, q

H
N )q̃N + f+

N−1 = 0.

VI. EXAMPLE COMPUTATIONS

As mentioned in the introduction, we focus on an appli-
cation scenario that is directly motivated by the Darwin and
TPF missions: We consider a group of six spacecraft in the
vicinity of a Halo-orbit and require the spacecraft to adopt a
planar hexagonal formation with center on the orbit. Figure 3
shows the Halo (in normalized coordinates) that we have
chosen for this computation and the part of the orbit that we
used for the linearization of the problem. In our computations
we usedN = 10 time intervals and solved the resulting
finite dimensional constrained optimization problems by the
SQP-method as implemented in the routineE04UEF of the
NAG-library.
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Fig. 3. L2 Halo-orbit as chosen for the example computations (thin line)
and the part used for the linearization (thick line).

Discrete Mechanics vs. Midpoint Rule Discretization

We first compare our discretization scheme to a finite
difference approach, where the dynamical constraints are
discretized by applying the Midpoint Rule to the associ-
ated ordinary differential equations of the system (i.e. the
forced Euler-Lagrange equations). As the collision avoidance
strategy we here used the approach based on the artifical
potential.

Both methods result in almost identical solutions. Figure 4
shows (in normalized coordinates) the inital positions (×),
the optimal trajectories as well as the final positions (◦)—
here we only plot the data for the discrete mechanics solution
since the one for the other method is visually identical.
The group initially is located along a line and ends in a
hexagonal formation in the plane with normaln = (1, 0, 1).
In Figure 5 we show the associated temporal evolution of
the force which generates the translational motion inx1-
direction. In Figure 6 we compare the cost within each time
interval for the individual spacecraft. With both methods, the
overall cost is equal toJ = 1.871−10.

As second example we computed optimal trajectories for
a randomly chosen initial configuration and a final hexagonal
formation in thex1 − x2-plane. Figure 7 shows the trajec-
tories of the group for the discrete mechanics method. The
overall cost isJ = 4.48 · 10−10 for both methods.

Comparing Collision Avoidance Strategies

As a second numerical test we compare the two collision
avoidance strategies described in Section IV. As shown in
Figure 8, the strategy based on the penalty term in the
cost function leads to a slightly different final configuration.
However, the overall cost (excluding the contribution from
the penalty term) is equal to the one obtained using the
artificial potential function.
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VII. C ONCLUSION

We employed a recently developed approach for the
numerical treatment of optimal control problems for me-
chanical systems in order to compute optimal open loop
control laws for the reconfiguration of a group of formation
flying satellites. Our numerical results indicate that the new
method performs equally well as a standard finite difference
approach, while the numerical effort is significantly lower
since the number of state variables is only half as large.
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