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Abstract—We employ a recently developed new technique collocation) approach, while showing the same nice energy
for the numerical treatment of optimal control problems for  ~gnservation properties.

mechanical systems in order to compute optimal open loop . f h . f
control laws for the reconfiguration of a group of formation In our computations, we focus on the concrete setting o

flying satellites. The method is based on a direct discretization the Darwin and TPF missions: the group of six spacecraft
of a variational formulation of the dynamical constraints. We || be placed in the vicinity of a certain periodic orbit near
extend the method by linearizing around a given nominal trajec- the L inf.. Th . ired t .
tory and incorporate certain collision avoidance strategies. We - © agrange' pOIn. 2. [h€ group 1S required 1o gchIre a
numerically illustrate the approach for a certain reconfiguration ~ planar formation with each of the spacecraft being loacted
maneuver in the context of future formation flying missions and  at the vertex of a regular hexagon in that plane, while their
compare our method to a standard finite difference approach. common attitude must be aligned with the normal to the
plane.
) o - ) An outline of the paper is as follows: based on the model
In the upcoming space missiomarwin® andTerrestrial ¢, the dynamics of the spacecraft that is introduced in
Planet Finder (TPF), a group of formation flying spacecraft geciion 11 we formalize the optimal control problem in
will build up an infrared interferometer in order to deteClgetion 111, We recall the numerical method that is used for

and analyze planets outside our solar system. One of the q,|,tion in Section V and finally present our numerical
many challenges of these missions is to develop teChn'une%uIts in Section VI

for controlling the spacecraft such that their relative motion

I. INTRODUCTION

meets certain very demanding accuracy requirements: while Il. THE MODEL
their mutual distance is on the order of sevelr@d m, this _ _ _ _
distance has to be kept constant up to an errot(ofs m We are dealing with a group of identical spacecraft.

during a measurement period. In [2], numerical evidence h&&ch spacecraft is modeled as a rigid body with six degrees

been given that it is indeed possible to keep the spacecr&ﬁ freedom (position and orientation), i.e. its configuration

in formation using a low thrust control strategy only. manifold is SE(3). We assume that each spacecraft can be
Additionally, in regular time intervals, the group of Sloace_controlled in this configuration space by a force-torque pair

craft will have to be reconfigured such that another planetaff*> 7), &cting on its center of mass.

system can be analyzed. In light of the tight mass budget !n the current mission concepts for Darwin and TPF,

of these missions it is of great interest to minimize thdl IS planned to position the group of spacecraft in the

propellant consumption in performing these reconfiguration¥icinity of a Libration orbit around thel, Lagrange point.

In this paper we employ a recently developed new technigdefrrespondingly, for each spacecraft the dynamical model

[1] for the numerical treatment of optimal control problemdor the motion of its center of mass is given by ttiecular

for mechanical systems in order to compute optimal contrégstricted three body problem

laws for the reconfiguration of the spacecraft. The method Two large bodies (theprimaries i.e. Sun and Earth in

bases on a variational formulation of the mathematical mod@Hr case) with masses:; and m, rotate on circles with

of the mechanical system and uses a direct discretizati@@mmon angular velocity around their center of mass. A

of this formulation instead of a discretization of the asthird body, the spacecraft, moves within their gravitational

sociated ordinary differential equations (the Euler-Lagrangeotential without affecting the motion of the primaries. We

equations). This leads to a scheme that involves only half &¢glect gravitational forces between the spacecraft. Figure 1

many unknowns as a standard reversible finite difference (§hows the position of the primaries and the equilibria (the
Lagrange points L1, ..., L5 in the zy-plane of a rotating
Partially supported by the Collaborative Research Centre 376 “Massivegordinate system. In Figure 2 we p|0t a family of periodic
Parallelism” . . L .
Lhttp:/Awww.esa.int/science/darwin orbits (Halo orbits) in the vicinity of the L, Lagrange point.
2hitp://planetquest.jpl.nasa.gov/TPF This family has been computed by a predictor corrector



Y4 IIl. THE CONTROL PROBLEM

L Our goal is to compute control law&F ) (t), 7(9)(t)),
i=1,...,n, for each spacecraft, such that the group moves
from a given initial state(z(®, R®, @ RO)"  into a
prescribed target manifold within a prescribed time interval.

Ly 0 L L In our application context, the target manifold will be defined
- p A ¢ "7{10_;: by _prescribing the relative positioning of the spacec_raft,
-—re— > their common velocity as well as a common orientation.
H 1 - H We additionally require the resulting controlled trajectory to
minimize a given cost functional which typically is related

oLs to the associated fuel consumption of the spacecratft.

More precisely, for their target state, we require the
spacecraft to be located in a planar regular polygonal con-
figuration with center on a Halo orbit. Let € R® be a
Given unit vector (the “line of sight” of the spacecraft).
The target manifold/ C T'SE(3)" is the set of all states
(z®, R® ) RO)_ such that

method on an initial orbit found by a shooting technique 1) all spacecraft lie in a plane with norma i.e.

(see [2]). (@ — 20 vy =0, ij=1,...,n; (2

Fig. 1. Rotating coordiante system: location of the primaries and th
Lagrange points.

x 10 2) within that plane, the spacecraft are located at the
vertices of a regular polygon with a prescribed center
on a Halo orbit. Letr, € R be a given radius and

7 € R3 a certain point on a Halo orbit and let
vi- L vi € R® be two perpendicular unit vectors that
are perpendicular to. For: = 1,...,n we consider
the vector

-8

. 20 = it v (2 — ) e R?

-12 and require that

—
X
] =
0.01
1.012 /(\) " n  ip
’ , Loogg 10094 (Zz) =To€ "

y 20,01 0999 1.0016 1.004;
X t = 1,...,n, wherez € C denotes the complex
. 9 .
Fig. 2. Family of periodic orbits in the circular restricted three body numbe_r associated to a Ve(.:tOE R and<p descr_'bes
problem in the vicinity of theL,-Lagrange point. the attitude of the polygon in the plane determined by
vi- andvy-.

The idea of this formulation is not to prescribe a fixed

vertex on the polygon for each spacecraft but rather

to let the optimization process find the best possible

arrangement (if possible). In order to avoid that more
V(z) = — L—p — H , (1) than one spacecraft attains the same vertex, we employ

o = (1= p,0,0) |z —(-40,0) a collision avoidance strategy as described in Section

whereu = my /(m1+ms2) is the normalized mass. Its kinetic IVv);

energy is the sum of 3) all spacecraft have their “line of sight” aligned with

For simplicity we here impose a more restrictive con-

dition, namely that each spacecraft is rotated according

. . . L ; i o) i
(assuming that is mass is equalitdor simplicity) and to a prescribed rotation matrik;”, i.e. we require that

RW =Ry, i=1,...,n;

In a normalized, rotating coordinate system (cf. Figure 1),
the potential energy of the spacecraft at position=
(w1, 2, 23) € R3 is given by

1
Kyandw, ) = = (21 — wx2)? + (¥9 + wx1)? + 23),
2

1
Kiot(Q) = 5QTJQ,

. ) L 4) all spacecraft have the same prescribed linear velocity,
whereQ2 € R? is the angular velocity and the inertia tensor ) P P y

of the spacecraft (again, for simplicity, we normalize= I). i@ =gy, i=1,....n,



where o will typically be determined on basis of the V. THE NUMERICAL METHOD
Halo orbit under consideration, and they have zero

angular velocity, i.e. In order to solve the above formulated optimal control

problem, we adapt a recently developed technique [1] that
R® = 0, i=1,...,n. relies on a direct discretization of a variational formulation
of the problem:

As mentioned, in addition to controlling to the target . ) . . .
. . L ; A mechanical system with configuration spages to be
manifold, we would like to minimize the fuel consumption 0 -0
moved on a curvg(t) € @, t € [0,1], from a state(¢”, ¢”)

of the spacecraft. Here we simply consider the cost function .
P Py to a stat€q', ¢*) under the influence of a forgeé The curves

n ty ] ) e . .
J(F,7) = Z/ |F(Z) 02 + |T(z)(t)|2 dt, 3) q and f shall minimize a given cost functional
i=1 %o

where F(t) = (FO(t),...,F(" () and () = J<q7f)=/0 Cla(®),q(t), f(1)) dt. (5)

(M (1),..., 7™ (t)) denote the force and torque functions

for the system. If L:TQ — R denotes the Lagrangian of the mechanical

system, the motiog(t) of the system satisfies thegrange-
IV. COLLISION AVOIDANCE d’Alembert principle which requires that

In order to avoid collisions between the spacecraft, we 1 1
follow two different approaches: 5/ L(q(t),4(t)) dt +/ f@)-dq(t)dt=0 (6)
1) we add an artificial potential to the gravitational poten- ’ 0
tial V (i.e. we change the dynamics of the spacecraftfor all variationség with é¢(0) = dq(1) = 0.

2) we add a pena|ty term to the cost function of the Using aglobal discretization of the states and the controls
problem. we directly obtain, via thediscrete Lagrange-d’Alembert

principle, equality constraints for the resulting finite dimen-
sional nonlinear optimization problem, which can be solved
We consider an artificial potentidd, (cf. [4]) defined by by standard methods.

A. Atrtificial potential

i ; Co(Inrg; +do/rii), 0<ri <do, . L
Va(z® 20)) = { c Elndo]-i- 1)0/ i) ri; > Zio 0 Discretization

@ ) , , ) We replace the state spa@&) of the system byQ x @
wherer;; = |z —2\)] is the dlstancg between tmqsh and .4 a pathg : [0,1] — Q by a discrete pathqy
the j-th spacecraftC, > 0 anddy > 0 is a safety distance. {0,h,2h Nh = 1} — Q, N € N, where we view

For.rij < dp, th.e resulting forcef, = VYV, acts such that gr = qa(kh) as an approximation t@(kh) [5]. Analogously,
thei-th and thej-th spacecraft are repelled from each otherWe approximate the continuous forge [0,1] — T*Q by a

while for r;; > do no artifical force is in effect. discrete forcef, : {0, h,2h, ..., Nh = 1} — T*Q (writing
In this case, the Lagrangian of the full system reads o = fa(kR)) oy

n
L = ZKIT&HS(QU(Z)@(Z)) + Kfot(o‘(z)) The Discrete Lagrange-d’Alembert Principle
1=1
n @ n @ -G) Based on this discretization, we approximate the action
_ZV(QC ) — Z Va(z, 27). integral in (6) on a time slicékh, (k + 1)h] by a discrete
=t N LagrangianL, : Q x Q — R,

B. Penalty term Ld(Qk Qk-i-l) -— hL <Qk+1+11k Qk+1_(1k>
We use the term 2 "

(k+1)h
Pz, 20)) = Cq(exp (—50(rij — do)?) + Sexp (—2r3)), A /k} L(q(t),4(t)) dt,
ri; = |2 —2U)], in order to penalize a too close approachyng the virtual work by
of the spacecraft. The new cost function accordingly reads

/er)h (1) - Sq(t) dt ~ hfk+1 + i k41 + 0qk
k

JFED = Y / FO@)P + 7O 1) de \ 2 2
=1 0

nooety ‘ :%(fk+1+fk)'5Qk+%(fk+1+fk)’5%+17
+> / Pz (t), z9)(¢)) dt.
Ehe to i.e. we have used,” = f,j = %(fkﬂ + f) as theleft and
right discrete forces



The discrete version of the Lagrange-d’Alembert principlavith respect tof,, subject to the constraintg = ¢°, ¢y =
(6) then requires one to find discrete pafigs}_, such that ¢! and

for all variations{dq; }_, with dgo = dgx = 0, one has . _
h=0 D3 L(qo,qo) + D1La(qo,q1) + fo =0,
N-1 N-1

_ DyLg(qi—1, D1 Ly(qs, -+ =0,
5 Z La(qr: qes1) + Z fo dak + £ - 6qr1 = 0. (7) 2Lalan Qk)+ tLalan, aia) + fis ++fk
k=0 k=0 —DyL(qn,4n) + DoLa(gn-1,9n8) + fy_1 =0,

This is equivalent to the system k=1,...,N—1.
D2 La(qr-1,qx) + D1La(qr, gr1) + fi_ + fr =0, (8)

k =1,...,N — 1. These are thdorced discrete Euler- Linearization

Lagrange equations One major numerical problem in a direct application of
the numerical scheme described above (of any scheme, in
Discrete Cost Function fact) lies in the fact that the scales of interest differ by a
We approximate the cost functional (5) on the time slicéactor of around10?: the distance between the Sun and the
[kh, (k + 1)h] by Earth is of the order of0'' m, while the distances between

N the spacecraft is of the order of sevet@) m. When using
Caqk; Grs1, frs fry1) == hC (qk“z R f’““;f’“) ,  standard double-precision floating point arithmetic, rounding

(k+1)h errors will notably influence any corresponding computation.
~ / C(q(t),q(t), f(t)) dt, On the other hand, we are interested in the relative positions
th of the spacecraft with respect to each other only.
yielding thediscrete cost functional We will therefore perform our computations in a local
N-1 coordinate system by linearizing the system around a Halo-
Ja(a, fa) = D Cal@r, Gh1, fis frin)- (9)  orbit. Let(¢/7,¢), k =1,..., N, be points on given Halo-
k=0 orbit (a Halo-orbit of the family shown in Figure 2). Writing
Boundary Conditions dr = qx — g/, the linearized constraints for the discrete

Finally, we need to incorporate the boundary conditiongptlmlzatlon problem read
q(0) = ¢°, 4(0) = ¢ andq(1) = ¢', 4(1) = ¢" into our DDy L(qf, 48" )Go + D2DaL(qf, 46") (do — 4&7)
discrete description. To this end, we link the description in +D1 Dy La(qdt, ¢ )Go + DaD1La(qdt, ¢)qr + fo =0,
Q x @Q to one inT'Q using thediscrete Legendre transforms 0 - 0 -
F/TLy: QxQ — T*Q andF/~ Ly : Q x Q — T*Q for D1 Dy La(qf" 1, qf )ak—1 + DaDaLa(qf’ 1, aff ) ar
forced systems: +D1D1La(qf, aff 1)@k + DaD1La(af , aiy 1) Gr+1

+hi e =0,

fork=1,...,N —1, and finally

—DngL(qﬁ,Qﬁ)QN
~DaDa a0 v — ff) + DiDaLaaf 1, aff)an
+D2DsLa(qn 1,48 )in + vy = 0.

F ™ La : (qe—1,ar) — (s Pr),
pk = DoLa(qr—1,qx) + fi—_, and
F/"La: (qe-1,a) = (qo—1,Pr—1);
Pk—1 = —D1La(qe—1,qr) — fr_:-
Using thestandard Legendre transforfil : 7Q — T*Q

FL: (q,4) — (q,p) = (q,D2L(q,q)), VI. EXAMPLE COMPUTATIONS

As mentioned in the introduction, we focus on an appli-

this leads to the twaliscrete boundary conditions ) ) e ] |
cation scenario that is directly motivated by the Darwin and

DyL(q0,40) + D1La(qo. 1) + fo =0, TPF missions: We consider a group of six spacecraft in the

—DsL(qn, 4n) + DoLa(gn—1,qn) + [, = 0. vicinity of a Halo-orbit and require the spacecraft to adopt a
planar hexagonal formation with center on the orbit. Figure 3

The Discrete Constrained Optimization Problem shows the Halo (in normalized coordinates) that we have

To summarize, after performing the above discretizatioahosen for this computation and the part of the orbit that we
steps, we are faced with the following equality constrainetised for the linearization of the problem. In our computations
nonlinear optimization problem: Minimize we used N = 10 time intervals and solved the resulting

N1 finite dimensional constrained optimization problems by the
Jalqa, fa) = Z Ca(qrs Qests fr Foat) (10) SQP-method as implemented in the routEB@4UEF of the
=0 NAG-library.
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Fig. 3. Lo Halo-orbit as chosen for the example computations (thin line)
and the part used for the linearization (thick line). Fig. 4. Initial positions &), optimal trajectories and final positions) (for
a reconfiguration of six spacecratft.

Discrete Mechanics vs. Midpoint Rule Discretization

We first compare our discretization scheme to a finite
difference approach, where the dynamical constraints are
discretized by applying the Midpoint Rule to the associ-
ated ordinary differential equations of the system (i.e. the
forced Euler-Lagrange equations). As the collision avoidance
strategy we here used the approach based on the artifica
potential.

Both methods result in almost identical solutions. Figure 4
shows (in normalized coordinates) the inital positiong, (
the optimal trajectories as well as the final positiony—
here we only plot the data for the discrete mechanics solution
since the one for the other method is visually identical. ™o oo o o oo s o o7 oo oo
The group initially is located along a line and ends in a
hexagonal formation in the plane with normak (1,0,1).  Fig. 5. Time evolution of ther; -control force of each spacecraft for the
In Figure 5 we show the associated temporal evolution or?conf'gurat'on maneuver in Figure 4.
the force which generates the translational motionzin
direction. In Figure 6 we compare the cost within each time  ox
interval for the individual spacecraft. With both methods, the
overall cost is equal tof = 1.871710,

As second example we computed optimal trajectories for
a randomly chosen initial configuration and a final hexagonal
formation in thex; — zo-plane. Figure 7 shows the trajec-
tories of the group for the discrete mechanics method. The
overall cost isJ = 4.48 - 10710 for both methods.

force in x1-direction

2
?
Q
[}

Comparing Collision Avoidance Strategies

As a second numerical test we compare the two collision
avoidance strategies described in Section IV. As shown in
Figure 8, the strategy based on the penalty term in the
cost function leads to a slightly different final configuration. ** oo o o oo o
However, the overall cost (excluding the contribution from
the penalty term) is equal to the one obtained using tf’%%cféraﬂ
artificial potential function.

Cost accumulated over each time interval of the individual
for the reconfiguration maneuver in Figure 4.
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Fig. 7. Time evolution of the positions of the spacecraft (discrete mechanics
discretization).
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Fig. 8. Comparing the collision avoidance strategies: Final positions of
the spacecraft for the reconfiguration maneuver in Figure 4.

VIl. CONCLUSION

We employed a recently developed approach for the
numerical treatment of optimal control problems for me-
chanical systems in order to compute optimal open loop
control laws for the reconfiguration of a group of formation
flying satellites. Our numerical results indicate that the new
method performs equally well as a standard finite difference
approach, while the numerical effort is significantly lower
since the number of state variables is only half as large.
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