Direct simulation and regularization modelling of rotating turbulence

Bernard J. Geurts
University of Twente
University of Eindhoven

Darryl D. Holm
Imperial College
Los Alamos Nat. Lab.

Arkadiusz K. Kuczaj
University of Twente

Rotating decaying turbulence

Importance
• Engineering flows: jet engines, turbines
• Large-scale flows: Earth’s atmosphere, ocean circulation

Turbulence in a rotating frame of reference

Rotating cubic box with angular velocity Ω.

Approach
Incompressible Navier-Stokes equations with Coriolis force:
$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{v} + \frac{\Omega \times \mathbf{v}}{Re}.$$

Characteristic numbers:
$$Re = \frac{U L}{v} ; \quad Ro = \frac{\Omega L}{v}.$$

Regularity models
Regularized velocity: $\mathbf{\bar{v}} = (1 - \alpha^2) \mathbf{v} - \frac{\alpha}{Re} \mathbf{\bar{v}}$.

Leray model:
$$\frac{\partial \mathbf{\bar{v}}}{\partial t} + (\mathbf{\bar{v}} \cdot \nabla) \mathbf{\bar{v}} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{\bar{v}} + \frac{\Omega \times \mathbf{\bar{v}}}{Re}.$$

LANS-α
$$\frac{\partial \mathbf{\bar{v}}}{\partial t} + (\mathbf{\bar{v}} \cdot \nabla) \mathbf{\bar{v}} + \sum_{l=1}^{3} \sigma_l \nabla v_l + \nabla p = \frac{\Omega \times \mathbf{\bar{v}}}{Re},$$

where modified pressure $P = p - \frac{1}{3} |\mathbf{\bar{v}}|^2$.

Computational method
• Spin-up of decaying turbulence
• Pseudo-spectral fully dealiased simulations
• Resolution from 128^3 (LES) up to 512^3 (DNS)
• Spectral helical wave decomposition – larger time-steps
• Initial Taylor-Reynolds number $Re_L = 92$ and 200
• Number of rotation rates $\Omega = 0.1, 2.5, 10, 20, 50, 100$

Decay exponent α and spectral exponent ρ

<table>
<thead>
<tr>
<th>Ω</th>
<th>ρ</th>
<th>Nonconfined</th>
<th>Confined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega = 0$</td>
<td>$\rho = \frac{5}{3}$</td>
<td>$\alpha = 6/5$</td>
<td>$\alpha = 2$</td>
</tr>
<tr>
<td>$\Omega \neq 0$</td>
<td>$\rho = 2$</td>
<td>$\alpha = 3/5$</td>
<td>$\alpha = 1$</td>
</tr>
<tr>
<td>$\Omega \neq 0$</td>
<td>$\rho = 3$</td>
<td>$\alpha = 0$</td>
<td>$\alpha = 0$</td>
</tr>
</tbody>
</table>

Rotating (I) - energy transfer time-scale T^{-1}
Rotating (II) - totally inhibited energy transfer (Kraichnan)

Testing hypothesis with DNS

Direct Simulations

Competition: 3D turbulence - 2D structuring

Vertical structuring of flow for turbulence at $Ro = 92$.

Anisotropic alteration of energy spectrum

Energy spectra components at $t = 2.5$ for $Ro = \infty$, 0.2, 0.1, 0.02.

Decay of kinetic energy

Slower kinematic energy decay at stronger rotation:

$Ro = \infty$, 1.0, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01

$E \sim (t_2 - t_1)^{\lambda_1}$

Exponent of the energy decay computed over various time-intervals $t_2 - t_1$.

Conclusions

• Cross-over from 3D to 2D dynamics as Ro decreases (seen in flow structuring and energy spectra)
• Accurate predictions of Leray and LANS-α models for lower Reynolds number
• Energy exponent transition from $-5/3$ ($Ro \rightarrow \infty$) to -3 ($Ro = 0$) for the Leray model at higher Reynolds number