Direct simulation and regularization modelling of rotating turbulence

Bernard J. Geurts University of Twente University of Eindhoven

Darryl D. Holm Imperial College Los Alamos Nat. Lab.

Arkadiusz K. Kuczaj University of Twente

Rotating decaying turbulence

Importance

Direct Simulations

Competition: 3D turbulence - 2D structuring

Regularization models

- Engineering flows: jet engines, turbines
- Large-scale flows: Earth's atmosphere, ocean circulation

Turbulence in a rotating frame of reference

Rotating cubic box with angular velocity Ω

Approach

Regularization models

Regularized velocity: $\bar{\mathbf{v}} = (1 - \alpha^2 \Delta)^{-1} \mathbf{v}$, α - lagrangian distance of fluctuations from the mean trajectory

Leray:

$$\begin{cases} \partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + (\mathbf{\bar{v}} \cdot \nabla) \mathbf{v} + \nabla p = \frac{\mathbf{\bar{v}} \times \mathbf{\Omega}}{Ro} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$$

LANS- α :

$$\begin{cases} \partial_t \mathbf{v} - \frac{1}{Re} \Delta \mathbf{v} + (\bar{\mathbf{v}} \cdot \nabla) \mathbf{v} + \sum_{j=1}^3 v_j \nabla \bar{v}_j + \nabla P = \frac{\bar{\mathbf{v}} \times \Omega}{Ro} \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$$

where modified pressure $P = p - \frac{1}{2} (|\mathbf{\bar{v}}|^2 + \alpha^2 |\nabla \mathbf{\bar{v}}|^2)$

Computational method

• spin-up of decaying turbulence • pseudo-spectral fully dealiased simulations • resolution from 128^3 (LES) up to 512^3 (DNS) • spectral helical-wave decomposition – larger time-steps • initial Taylor-Reynolds number $R_{\lambda} = 92$ and 200 • number of rotation rates $\Omega = 0, 1, 2, 5, 10, 20, 50, 100$

Decay exponent *n* **and spectral exponent** *p*

Nonconfined Confined

Conclusions

	р	Nonconfined	Confined	
$\Omega = 0:$	5/3	n = 6/5	n = 2	
$\Omega \neq 0$ (I):	2	n = 3/5	n = 1	
$\Omega \neq 0$ (II):	3	n = 0	n = 0	

Rotating (I) - energy transfer time-scale Ω^{-1} Rotating (II) - totally inhibited energy transfer (Kraichnan)

Testing hypothesis with DNS

Exponent of the energy decay computed over various time-intervals $t_2 - t_1$

• cross-over from 3D to 2D dynamics as *Ro* decreases (seen in flow structuring and energy spectra)

• accurate predictions of Leray and LANS- α models for lower Reynolds number

• energy exponent transition from -5/3 ($Ro \rightarrow \infty$) to -3 $(Ro \rightarrow 0)$ for the Leray model at higher Reynolds number

University of Twente, Mathematical Sciences, EEMCS P.O. Box 217, 7500 ÁE Enschede, The Netherlands Phone: + 31 53 489 4272, Fax: + 31 53 489 4833

J.M. Burgerscentrum