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Rotating decaying turbulence

Importance

e Engineering flows: jet engines, turbines
e Large-scale flows: Earth’s atmosphere, ocean circulation

Turbulence in a rotating frame of reference
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Rotating cubic box with angular velocity ()

Approach

Incompressible Navier-Stokes equations with Coriolis force:
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Characteristic numbers:
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Regularization models

Regularized velocity: v = (1 — o?A)" v, « - lagrangian dis-
tance of fluctuations from the mean trajectory

Leray:

LANS-a:

{atv — AV + (T V)V P 0V + VP = T8
V-v=0

where modified pressure P = p — (|9|? + 2| VV|?)

Computational method

e spin-up of decaying turbulence

e pseudo-spectral fully dealiased simulations

e resolution from 1283 (LES) up to 5123 (DNS)

e spectral helical-wave decomposition — larger time-steps
e initial Taylor-Reynolds number Ry = 92 and 200

e number of rotation rates {2 = 0, 1, 2, 5, 10, 20, 50, 100

Decay exponent n and spectral exponent p
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Rotating (I) - energy transfer time-scale Q!
Rotating (II) - totally inhibited energy transfer (Kraichnan)

Testing hypothesis with DNS
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Direct Simulations

Competition: 3D turbulence - 2D structuring

Vertical structuring of flow for turbulence at Ry = 92:

vorticity wy contours at ¢ = 2.5 for
Ro =00,0.2,0.1,0.02 (a,b,c,d)

Anisotropic alteration of energy spectrum

Fh1 = E99 # L33

k/(2m)
Energy spectra components at ¢ = 2.5 for Ro = 00, 0.2, 0.1, 0.02

Decay of kinetic energy
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Slower kinetic energy decay at stronger rotation:
Ro = o0,1,0.5,0.2,0.1,0.05,0.02,0.01

E ~ (tQ — t1>_n
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Exponent of the energy decay computed over various
time-intervals ¢ty — ¢4
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Regularization models

Energy decay exponent at R) = 92
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DNS (black), LES simulations: Leray, LANS-o

Energy decay exponent at ) = 200
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LES simulations: Leray, LANS-a

Leray model - spectral exponent at R, = 200
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Average transport power spectra II (evidence of inertial
range) and energy spectrum exponent p computed in various
spectral regions

Conclusions

e cross-over from 3D to 2D dynamics as [Ro decreases
(seen in flow structuring and energy spectra)

e accurate predictions of Leray and LANS-a models for lower
Reynolds number

e energy exponent transition from —5/3 (Ro — o0) to —3
(Ro — 0) for the Leray model at higher Reynolds number
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