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THE UNIVERSAL

TEICHMÜLLER SPACE

Notation and Elementary Facts

Ĉ Riemann sphere, D := {z ∈ C | |z| < 1}, D∗ := {z ∈ Ĉ | |z| > 1}

L1(D∗) :=
{
φ : D∗ → C

∣∣∣∣ ‖φ‖1 :=
∫
D∗
|φ(z)|d2z < +∞

}
separable

[
L1(D∗)

]∗ ∼= L∞(D∗) :=
{
φ : D∗ → C | ‖µ‖∞ := supz∈D∗ |µ(z)| < +∞

}
,

non-separable, isometry: ∀L ∈
[
L1(D∗)

]∗
, ∃!µ ∈ L∞(D∗) such that

L(φ) =
∫
D∗
µ(z)φ(z)d2z,

In Teichmüller theory, µ ∈ L∞(D∗) Beltrami differential on D∗.

A1(D∗) =
{
φ ∈ L1(D∗)

∣∣∣ φ holomorphic
}
⊂ L1(D∗) closed subspace
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[A1(D∗)]∗ ∼= L∞(D∗)/N (D∗) as Banach spaces, where

N (D∗) :=
{
µ ∈ L∞(D∗)

∣∣∣∣ ∫D∗ µ(z)φ(z)d2z = 0, ∀φ ∈ A1(D∗)
}

is the space of infinitesimally trivial Beltrami differentials.

Canonical splitting: L∞(D∗) = N (D∗)⊕Ω−1,1(D∗), where

Ω−1,1(D∗) :=
{
µ ∈ L∞(D∗)

∣∣∣µ(z) = (1− |z|2)2φ(z),

φ a holomorphic map on D∗
}

is the closed non separable Banach subspace in L∞(D∗) consisting

of harmonic Beltrami differentials on D∗ . This decomposition

identifies the Banach spaces L∞(D∗)/N (D∗) and Ω−1,1(D∗).

The duality pairing restricted to the closed subspace

Ω−1,1
0 (D∗) :=

{
µ ∈ Ω−1,1(D∗)

∣∣∣∣∣ lim
|z|→1+

µ(z) = 0

}

identifes A1(D∗) with the dual space of Ω−1,1
0 (D∗).
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Summarizing, we have[
Ω−1,1

0 (D∗)
]∗ ∼= A1(D∗),

[
A1(D∗)

]∗ ∼= Ω−1,1(D∗),[
Ω−1,1

0 (D∗)
]∗∗ ∼= Ω−1,1(D∗).

Define the non-separable complex Banach space

A∞(D∗) :=

{
φ holomorphic in D∗

∣∣∣∣∣ sup
z∈D∗

|φ(z)(1− |z|2)2| <∞
}

and the closed subspace

A0
∞(D∗) :=

{
φ ∈ A∞(D∗)

∣∣∣∣∣ lim
|z|→1+

(1− |z|2)2φ(z) = 0

}
.

Then the harmonic Beltrami differentials are written in terms of

A∞(D∗) as

Ω−1,1(D∗) :=
{
µ(z) = (1− |z|2)2φ(z)

∣∣∣ φ ∈ A∞(D∗)
}

Ω−1,1
0 (D∗) :=

{
µ(z) = (1− |z|2)2φ(z)

∣∣∣ φ ∈ A0
∞(D∗)

}
.

All these results remain valid when D∗ is replaced by D.
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Quasiconformal Maps on the Disc

S1 counterclockwise oriented unit circle. This orientation is the

boundary orientation of the closed unit disc cl(D) which is oriented

by giving a positively oriented basis of R2.

B1 the unit open ball in L∞(D).

• Let φ : D → D be an orientation preserving homeomorphism

that has all directional derivatives (in the sense of distributions)

in L1
loc(D). The φ is said to be quasiconformal if there is µ ∈ B1

such that

∂z̄φ = µ∂zφ.

This is called the Beltrami equation with coefficient µ.

• Any quasiconformal map extends to an orientation preserving

homeomorphism of the closed disc cl(D).
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The Universal Teichmüller Space and
its Banach Manifold Structure

Ĉ Riemann sphere. Denote by B∗1 the unit open ball in L∞(D∗).

• Model A. Extend every µ ∈ B∗1 to D by the reflection

µ(z) = µ

(
1

z

)
z2

z2
, z ∈ D.

Get a new map, also denoted by µ ∈ L∞(C). Let ωµ : Ĉ→ Ĉ be the
unique solution of the Beltrami equation

∂z̄ωµ = µ∂zωµ

which fixes ±1,−i. This ωµ is obtained by applying the existence
and uniqueness theorem of Ahlfors-Bers; it is a homeomorphism of
Ĉ and

ωµ(z) = ωµ

(
1

z

)
due to the reflection symmetry of µ. Hence, S1,D and D∗ are
invariant under ωµ.
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• Model B. Extend every µ ∈ B∗1 to be zero outside D∗. We denote

by ωµ : C→ C the unique solution of the Beltrami equation

∂z̄ω
µ = µ∂zω

µ,

satisfying the conditions f(0) = 0, ∂zf(0) = 1, and ∂2
z f(0) = 0,

where f is the holomorphic mapping f := ωµ|D. This ωµ is also

obtained by existence and uniqueness theorem of Ahlfors-Bers; it is

a homeomorphism of Ĉ.

If µ, ν ∈ B∗1 we have ωµ|S1 = ων|S1 ⇐⇒ ωµ|D = ων|D.

(1) We define the following equivalence relation on B∗1:

µ ∼ ν ⇐⇒ ωµ|S1 = ων|S1 ⇐⇒ ωµ|D = ων|D.

(2) The universal Teichmüller space is the quotient space:

T (1) := B∗1/ ∼ .
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(1) T (1) has a unique structure of a complex Banach manifold such

that the projection map

π : B∗1 → T (1)

is a holomorphic submersion.

(2) The kernel of the tangent map T0π : L∞(D∗)→ T0T (1) is

ker(T0π) = N (D∗),

so the decomposition L∞(D∗) = N (D∗) ⊕ Ω−1,1(D∗) identifies the

holomorphic tangent space T0T (1) = L∞(D∗)/N (D∗) with the Ba-

nach space Ω−1,1(D∗).

The universal Teichmüller space T (1) endowed with its complex

Banach manifold structure is denoted by T (1)B.

The manifold T (1)B is called universal Teichmüller space since it

contains as complex submanifolds all the Teichmüller spaces of

Fuchsian groups.
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The Bers Embedding

The Bers embedding

β : T (1)B → A∞(D), β([µ]) := S (ωµ|D) ,

is a biholomorphic mapping from T (1)B onto an open subset of

A∞(D); S denotes the Schwarzian derivative of a conformal map f ,

S(f) =
∂3
z f

∂zf
−

3

2

(
∂2
z f

∂zf

)2

.

In particular, the tangent map T[0]β induces a isomorphism T[0]β :

Ω−1,1(D∗)→ A∞(D) of complex Banach spaces, given by

T[0]β(ν)(z) = −
6

π

∫
D∗

ν(ζ)

(ζ − z)4
d2ζ

with inverse

T[0]β
−1(φ)(z) = −

1

2
(1− |z|2)2φ

(
1

z

)
1

z4
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Quasisymmetric Homeomorphisms of the Circle

An orientation preserving homeomorphism η of S1 is quasisym-

metric if there is M > 0 such that for every x and every |t| ≤ π/2

1

M
≤
η(x+ t)− η(x)
η(x)− η(x− t)

≤M.

Here we identify the homeomorphisms of the circle with the strictly

increasing homeomorphisms of the real line satisfying the condition

η(x+ 2π) = η(x) + 2π. The set of all quasisymmetric homeomor-

phisms of the circle is denoted by QS(S1); it is a group under the

composition of maps. The link with the quasiconformal mappings

on the disc is given by the

Beurling-Ahlfors Extension Theorem [1956]: An orientation pre-

serving homeomorphism of the circle admits a quasiconformal ex-

tension to the disc if and only if it is quasisymmetric.
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This extension is not unique.

It follows that ωµ|S1 is a quasisymmetric homeomorphism of S1,

where ωµ is a solution of the Beltrami equation for µ ∈ B∗1. Hence

Φ : T (1) −→ QS(S1)fix, [µ] 7−→ ωµ|S1, is bijective,

where QS(S1)fix := {η ∈ QS(S1) | η(±1) = ±1, η(−i) = −i}

This bijection endows the group QS(S1)fix with the structure of a

complex Banach manifold by pushing forward this structure from

T (1)B. The resulting Banach manifold is denoted by QS(S1)Bfix.

This bijection also endows the set T (1) with a group structure by

pulling back the group structure of QS(S1)fix. The multiplication

is

[ν] · [µ] =

[
µ+ (ν ◦ ωµ)rµ
1 + µ̄(ν ◦ ωµ)rµ

]
, where rµ :=

∂zωµ

∂zωµ
.

Relative to the Banach manifold structure, the right translations

R[µ] are biholomorphic mappings for all [µ] ∈ T (1). Indeed, we have
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R[µ] : [ν] ∈ T (1)B 7−→
[
µ+ (ν ◦ ωµ)rµ
1 + µ̄(ν ◦ ωµ)rµ

]
∈ T (1)B,

which depends holomorphically on the variable [ν]. The left trans-

lations are not continuous, in general, therefore T (1)B is not a

topological group.

Note that QS(S1)fix can be identified with the quotient spaces

QS(S1)/PSU(1,1) (or PSU(1,1)\QS(S1)). Indeed, given η ∈ QS(S1),

there exists only one γ ∈ PSU(1,1) such that η ◦ γ (or γ ◦ η) fixes

the points ±1 and −i. Note that the projections

QS(S1)→ QS(S1)/PSU(1,1) and QS(S1)→ PSU(1,1)\QS(S1)

are not group homomorphisms, when the quotient space is endowed

with the group structure of QS(S1)fix.
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TeQS(S1)Bfix is given by the vector fields u on the circle belonging
to the Zygmund space, which is defined to be

Z(S1) =
{
u ∈ C0(S1,R)

∣∣∣ there is a C such that

|u(x+ t) + u(x− t)− 2u(x)| ≤ C|t| for all x, t ∈ S1
}
,

and verifying the condition u(±1) = u(−i) = 0. In particular Z(S1)
contains the vector fields whose flows are quasisymmetric homeo-
morphisms (Reimann). Here the continuous vector fields u on the
circle are identified with continuous 2π-periodic functions on the
real line.

The isomorphism between TeQS(S1)Bfix and the model Banach space
A∞(D) of T (1)B is given by taking the tangent map at e to the map

QS(S1)Bfix
Φ−1
−→ T (1)B

β−→ A∞(D),

where β denotes the Bers embedding. This isomorphism is∑
n∈Z

une
inx ∈ TeQS(S1)Bfix ˜7−→ i

∑
n≥2

(n3 − n)unzn−2 ∈ A∞(D).
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Known: for all s < 1 we have the inclusion TeQS(S1)fix ⊂ Hs(S1),

Hs(S1) :=

u(x) =
∑
n∈Z

une
inx

∣∣∣∣∣∣ u−n = un and
∑
n∈Z
|n|2s|un|2 <∞

 ,
is the space of Sobolev class Hs real valued maps on S1.

Using the Banach manifold structure of QS(S1)Bfix, it is possible
to endow the whole group QS(S1) with a real Banach manifold
structure, by assuming that the bijection

Ψ : QS(S1) −→ PSU(1,1)×QS(S1)Bfix,

defined by the condition

Ψ(η) = (η̂, η0)⇐⇒ η = η̂ ◦ η0,

is a diffeomorphism. The group QS(S1) endowed with this Banach
manifold structure is denoted by QS(S1)B.

The choice of an other subgroup fixing three points does not change
the Banach manifold structure on QS(S1), because of:
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Let QS(S1)1 = {η ∈ QS(S1) | η fixes three points}. Then QS(S1)1
can be endowed with a Banach manifold structure in the same way

as QS(S1)fix. The bijection

PSU(1,1)×QS(S1)Bfix → PSU(1,1)×QS(S1)B1

(γ0, η0) 7→ (γ1, η1), such that γ0 ◦ η0 = γ1 ◦ η1,

is a smooth diffeomorphism. (We do not know if this is new.)

Hence: the identifications of QS(S1) with PSU(1,1)×QS(S1)Bfix or

PSU(1,1)×QS(S1)B1 gives the same Banach manifold structure.

Properties of QS(S1)B: The tangent space at the identity to the

real Banach manifold QS(S1)B is the Zygmund space Z(S1). The

group QS(S1)B is not a topological group but the right transla-

tions are smooth; it contains the subgroup QS(S1)Bfix as a closed

submanifold of codimension 3. (We do not know if this is new.)
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Symmetric Homeomorphisms of the Circle

An orientation preserving homeomorphism η of S1 is symmetric if

there is a continuous function ε(t), with ε(t)
t→0−→ 0, such that for

every x and every |t| ≤ π/2 we have

1

1 + ε(t)
≤
| η(x+ t)− η(x)|
| η(x)− η(x− t)|

≤ 1 + ε(t).

The set of all symmetric homeomorphisms S(S1) contains the group

DiffC
1

+ (S1) of all orientation preserving C1 diffeomorphisms of the

circle and is a subgroup of QS(S1).

Define S(S1)fix := {η ∈ S(S1) | η(±1) = ±1, η(−i) = −i} which is a

subgroup of S(S1). It is known that the embedding

β ◦Φ−1 : QS(S1)Bfix −→ A∞(D)

restricts to an injective map S(S1)fix −→ A0
∞(D), making the group

S(S1)fix into a smooth Banach submanifold S(S1)Bfix of QS(S1)Bfix.
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• TeS(S1)Bfix consists of vector fields u on the circle belonging to

the subspace Zsym(S1)0 := {u ∈ Zsym(S1) | u(±1) = u(−i) = 0},
where

Zsym(S1) =
{
u ∈ Z(S1)

∣∣∣ |u(x+ t) + u(x− t)− 2u(x)| ≤ ε(t)|t|, ∀x, t ∈ S1
}

for ε(t) is independent of x and ε(t)
t→0−→ 0.

• The group S(S1)fix is the closure in QS(S1)Bfix of the subgroup

Diff+(S1)fix consisting of orientation preserving smooth diffeomor-

phisms of the circle fixing the points ±1 and −i.

S(S1) becomes a real Banach manifold declaring that the bijection

Ψ : S(S1) −→ PSU(1,1)× S(S1)Bfix,

Ψ(η) = (η̂, η0)⇐⇒ η = η̂ ◦ η0,

is a diffeomorphism. The group S(S1) endowed with this Banach

manifold structure is denoted by S(S1)B. As before, we have
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S(S1)B is a closed real Banach submanifold of QS(S1)B and a
topological group with smooth right translations. It contains the
subgroup S(S1)Bfix as a closed submanifold of codimension 3 and is
the closure in QS(S1)B of the subgroup Diff+(S1). TeS(S1)B =
Zsym(S1), a closed spubspace of Z(S1).

Summary

Diff+(S1) ⊂ Diffs+(S1) ⊂ DiffC
1

+ (S1) ⊂ S(S1) ⊂ QS(S1),

for all s > 3/2. The differential properties are the following:

• Diff+(S1) is a C∞ Fréchet Lie group.

• Diffs+(S1) denotes the group of all orientation preserving Sobolev
class Hs diffeomorphisms with the Hs Hilbert manifold structure
(which is possible for s > 3/2).

• DiffC
1

+ (S1) is endowed with the C1 Banach manifold structure.
D2H-fest, Bernoulli Center, July 2007

18



• All these manifold structures are real and not complex.

• Diffs+(S1), DiffC
1

+ (S1), S(S1) are topological groups with smooth

right translations.

• QS(S1) has smooth right translations; not a topological group.

• All inclusions are smooth. The three first inclusions have dense

range. The last inclusion is a weak submanifold inclusion.

• Curious fact: The tangent space to QS1(S1)B is the bidual space

of the tangent space to its weak submanifold S(S1)B.

Same differential properties for the subgroups fixing ±1 and −i:

Diff+(S1)0 ⊂ Diffs+(S1)0 ⊂ DiffC
1

+ (S1)0 ⊂ S(S1)0 ⊂ QS(S1)0,

for s > 3/2. They are, in addition, complex manifolds.
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The tangent spaces at e to these subgroups are obtained by requir-
ing that u(±1) = u(−i) = 0 for the elements of the tangent vectors
at e to the corresponding large groups. They will be denoted by:

g∞ ⊂ gs ⊂ gC
1
⊂ gS ⊂ gQS.

Another realization: impose u−1 = u0 = u1 = 0 in the Fourier coef-
ficients. This corresponds to think of these subgroups as quotients
of the corresponding groups by the Möbius group PSU(1,1); so the
vector fields are taken modulo psu(1,1). Notation:

h∞ ⊂ hs ⊂ hC
1
⊂ hS ⊂ hQS.

Isomorphism between the two interpretations: restrict isomorphism

T : u ∈
{
u ∈ C0(S1,R) | u(±1) = u(−i) = 0

}
7−→

[u] ∈ C0(S1,R)/psu(1,1)

to the g’s. Since psu(1,1) =
{
c̄e−ix + b+ ceix | b ∈ R, c ∈ C

}
, we have

C0(S1,R)/psu(1,1) =

∑
n∈Z

une
inx ∈ C0(S1,R)

∣∣∣∣∣∣u−n = un, u1 = u0 = 0

 .
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Complex Structure in Fourier Representation

Recall that the complex structure of T (1)B is determined by requir-

ing that the projection B∗1 → T (1)B be a holomorphic submersion.

Therefore the complex structure on T (1)B is multiplication by i.

The complex structure induced on QS(S1)B0 is right-invariant and

its value J : hQS → hQS at the identity is

J

 ∑
n6=−1,0,1

une
inx

 = i
∑

n6=−1,0,1

sgn(n)une
inx

which is the expression of the Hilbert transform on the circle

J(u)(x) =
1

2π

∫
S1
u(s) cot

(
s− x

2

)
ds.

in Fourier representation. In particular,

J(sin(nx)) = cos(nx) and J(cos(nx)) = − sin(nx).
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The Weil-Petersson Metric

The Weil-Petersson metric on T (1)B is the right-invariant Her-

mitian metric whose value at the identity is given by

〈µ, ν〉 :=
∫
D∗
µ(z)ν(z)

4

(1− |z|2)2
d2z.

Nag and Verjovsky [1990] introduced it as a direct generalization

of the Weil-Petersson metric on the finite dimensional Teichmüller

spaces. It does not make sense for all µ, ν ∈ Ω−1,1(D∗) since it

converges only for µ, ν ∈ H−1,1(D∗) ⊂ Ω−1,1(D∗), where

H−1,1(D∗) : =

{
µ ∈ Ω−1,1(D∗)

∣∣∣∣∣
∫
D∗
|µ(z)|2

1

(1− |z|2)2
d2z <∞

}
=
{
µ(z) = (1− |z|2)2φ(z)

∣∣∣ φ ∈ A2(D∗)
}

and

A2(D∗) :=
{
φ holomorphic in D∗

∣∣∣∣ ∫D∗ |φ(z)|2(1− |z|2)2d2z <∞
}
.
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Using the identification

TeQS(S1)Bfix = hQS
T[0]Φ←− T[0]T (1)B

T[0]β−→ A∞(D),

the metric on hQS has the expression

he(u, v) =
π

2

∞∑
n=2

n(n2 − 1)unvn

and one can see that it converges only for u, v ∈ h3/2, the subspace

of H3/2 real vector fields on the circle with u0 = u1 = 0 which is

strictly included in hQS. Therefore, T[0]Φ
(
H−1,1(D)

)
= h3/2.

On the other hand, the metric on A∞(D) is given by

he(φ, ψ) =
1

4

∫
D
φ(z)ψ(z)(1− |z|2)2d2z,

which converges only if φ, ψ ∈ A2(D), a strict subspace of A∞(D).

Therefore T[0]β
(
H−1,1(D)

)
= A2(D).
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The corresponding Weil-Petersson Riemannian metric on QS(S1)Bfix
(considered as a real manifold), is given by

ge(u, v) =
π

2
Re

 ∞∑
n=2

n(n2 − 1)unvn

 =
π

4

∑
n6=−1,0,1

|n|(n2 − 1)unvn.

The imaginary part of the Hermitian metric is the symplectic form

ωe(u, v) =
π

2
Im

 ∞∑
n=2

n(n2 − 1)unvn

 = −
iπ

4

∑
n6=−1,0,1

n(n2 − 1)unvn.

As it was the case for the Weil-Petersson Hermitian metric, g and

ω are only defined on the subspace h3/2 of TeQS(S1)Bfix = hQS.

In order to solve the convergence problem, Takhtajan and

Teo [2003] introduce a new complex Hilbert manifold struc-

ture on T (1), such that the natural inner product is given

by the Weil-Petersson Hermitian metric.
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TAKHTAJAN-TEO THEORY
The Complex Hilbert Manifold Structure on T (1)

GOAL: define a Hilbert manifold structure on T (1) with model the
Hilbert space A2(D).

Use continuity of A2(D) ↪→ A∞(D) and H−1,1(D∗) ↪→ Ω−1,1(D∗).

A2(D)-Hilbert manifold structure on A∞(D): Coordinate chart at
φ ∈ A∞(D) is φ + A2(D). The resulting Hilbert manifold A∞(D)
modeled on A2(D) is not connected and is the union of uncountably
many components φ+A2(D).

A2(D)-Hilbert manifold structure on T (1): restrict the Banach man-
ifold charts from A∞(D) to A2(D). The resulting Hilbert manifold
T (1) is also not connected, with uncountably many components.

The sets T (1) and A∞(D) endowed with the A2(D)-Hilbert manifold
structure are denoted by T (1)H and A∞(D)H.
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As in the Banach case, the bijection Φ : T (1) → QS(S1)fix en-

dows the group QS(S1)fix with the structure of a complex Hilbert

manifold denoted by QS(S1)Hfix.

The Bers embedding

β : T (1)H → A∞(D)H , β([µ]) := S (ωµ|D) ,

is a biholomorphic mapping from T (1)H onto an open subset of

A∞(D)H. In particular, the tangent map T[0]β induces an isomor-

phism H−1,1(D∗) ∼= A2(D). The connected components of T (1)H

are the inverse images of the connected components of β
(
T (1)H

)
.

The connected component of [0] ∈ T (1)H is denoted by T (1)H◦ . The

manifolds T (1)H and T (1)H◦ have the following good properties:
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• The Weil-Petersson metric is strong on T (1)H, since it is the
natural Hermitian inner product on the tangent spaces. As a
consequence, g and ω are also strong with respect to the Hilbert
manifold structure.

• (T (1)H , J, ω) is a strong Kähler-Einstein Hilbert manifold with
negative constant Ricci curvature and negative sectional and
holomorphic sectional curvatures.

• The right translations on T (1)H are biholomorphic mappings.

• The connected component T (1)H◦ is a topological group.

• The connected component T (1)H◦ is the closure in T (1)H of the
subgroup Φ−1

(
Diff+(S1)fix

)
.

D2H-fest, Bernoulli Center, July 2007

27



The closure of the subgroup Diff+(S1)fix in the Hilbert manifold

QS(S1)Hfix is Φ
(
T (1)H◦

)
. Recall that the closure of the subgroup

Diff+(S1)fix in the Banach manifold QS(S1)Bfix is S(S1)fix. These

completions do not coincide. Indeed, for [µ] ∈ T (1) we have the

following characterization in terms of the Bers embedding β:

[µ] ∈ T (1)H◦ ⇐⇒ β ([µ]) ∈ A2(D) and

[µ] ∈ Φ−1
(
S(S1)

)
⇐⇒ β ([µ]) ∈ A0

∞(D).

Since A2(D) ( A0
∞(D) we get Φ

(
T (1)H◦

)
( S(S1)fix.

Endow QS(S1) with a real Hilbert manifold structure, by declaring

the bijection

Ψ : QS(S1) −→ PSU(1,1)×QS(S1)Hfix given by

Ψ(η) = (η̂, η0)⇐⇒ η = η̂ ◦ η0,

to be a diffeomorphism. QS(S1) endowed with this Hilbert manifold

structure is denoted by QS(S1)H. QS(S1)H◦ connected component

of e.
D2H-fest, Bernoulli Center, July 2007

28



TeQS(S1)H = H3/2(S1,R). The manifold QS(S1)H has smooth

right translations and contains the subgroup QS(S1)Hfix as a closed

submanifold of codimension 3.

A∞(D) Ω−1,1(D∗) Z(S1)0 Z(S1)

A0
∞(D) Ω−1,1

0 (D∗) Zsym(S1)0 Zsym(S1)

A2(D) H−1,1(D∗) H3/2(S1,R)0 H3/2(S1,R)

6

6

6

6

6

6

6

6

� - -

� - -

� - -

T[0]β

T[0]β

T[0]β

T[0]Φ

T[0]Φ

T[0]Φ
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T[0]β and T[0]Φ complex Banach space isomorphisms. Other ar-

rows: continuous inclusions. Last column of horizontal arrows have

images are codimension three subspaces. First row of vertical ar-

rows have closed ranges that are not complemented. Ranges of the

second row of vertical arrows are not closed.

A∞(D) ⊃ β(T (1)B) T (1)B QS(S1)Bfix QS(S1)B

A0
∞(D) ⊃ β(Tsym(1)B) Tsym(1)B S(S1)Bfix S(S1)B

A2(D) ⊃ β(T (1)H◦ ) T (1)H◦ QS(S1)Hfix,◦ QS(S1)H◦

6

6

6

6

6

6

6

6

� - -

� - -

� - -

β

β

β

Φ

Φ

Φ
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β and Φ are diffeomorphisms relative to the indicated complex Ba-

nach and complex Hilbert manifold structures. The three images

of β are open in the indicated Banach spaces. The last column is

formed by real Banach manifolds, the first three columns are com-

plex Banach manifolds. The right horizontal column of four arrows

are codimension three embeddings with closed range. All spaces

in this diagram are connected. The top row of vertical arrows are

weak embeddings, that is, injective immersions whose derivatives

have closed (but not necessarily complemented) ranges and have

the induced subspace topologies. In addition, the ranges of these

four inclusions are closed in the topological spaces of the first row.

The bottom row of vertical arrows are smooth inclusions whose

inverses from their ranges are discontinuous; the first three arrows

are holomorphic maps.

Tsym(1)B := Φ−1
(
S(S1)Bfix

)
. Since this space will play no role in

what follows we shall not define it intrinsically; T (1)B/Tsym(1)B is

called the asymptotic universal Teichmüller space.
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T := Φ(T (1)H◦ ) = QS(S1)Hfix,◦ is the object of study.

1. η ∈ T symmetric homeomorphisms η : S1 → S1 that fix ±1, −i

2. T complex Hilbert manifold and connected topological group

2. Right translations on T are biholomorphic maps Rη : T→ T

3. The group Diff+(S1)fix of smooth orientation preserving diffeo-

morphisms of S1 that fix the three points ±1,−i is dense in T

4. TeT = H3/2(S1,R)0 = g3/2.

5. Weil-Petersson metric on T is smooth, right invariant, strong.

T is Kähler-Einstein with negative constant Ricci curvature and

negative sectional and holomorphic sectional curvatures.
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TeT = H3/2(S1,R)0 = g3/2 is a Hilbert space of real vector fields,

identified with real valued functions, that also has a complex struc-

ture. Since the derivative of right translation by η ∈ T from TeT→
TηT is a Hilbert space isomorphism, the topology on the other tan-

gent space is equivalent to the H3/2 topology as well. Thus, the

topology induced on the tangent spaces of T by the Weil-Petersson

Riemannian metric is also the H3/2 topology (metric is strong).

Moreover, again by strongness and smoothness of the Weil-Petersson

Riemannian metric, its exponential maps form coordinate charts.

Since these charts map into the space of H3/2 functions, it follows

that T is a H3/2 Hilbert manifold.

Note that the relation η(eix) = eiη̄(x) identifies the elements η ∈ T

with the strictly increasing maps η̄ of R such that η̄(x + 2π) =

η̄(x) + 2π and η̄, η̄−1 ∈ H3/2
loc (R,R).

We do not know if this is Diff
3/2
+,fix(S

1).
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“Lie algebra structure” on TeT = H3/2(S1,R)0 = g3/2.

[f, g](θ) = g(θ)f ′(θ)− g′(θ)f(θ)

This makes sense for f, g ∈ g3/2, producing a vector field in H1/2.

Pointwise multiplication in Hr:

Palais [1968]: If t > (n/2) and r ≥ −t, pointwise multiplication

extends from

C∞(M,R)× C∞(M,R)→ C∞(M,R)

to a continuous bilinear map

Ht(M,R)×Hr(M,R)→ Hmin{r,t}(M,R).

In particular, for |r| ≤ t, Hr(M,R) is an Ht(M,R)-module.
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THE BOTT-VIRASORO GROUP
The Group and its Lie Algebra

The Bott-Virasoro group BVir(S1) is, up to isomorphism, the
unique nontrivial central extension of the diffeomorphism group of
the circle by R. As a set

BVir(S1) = Diff+(S1)× R
where Diff+(S1) is the group of orientation preserving smooth dif-
feomorphisms of the circle S1 := {eix | x ∈ R} ≡ R/2πZ. Thus,
ξ ∈ Diff+(S1) can be thought of as a strictly increasing diffeomor-
phism of R satisfying ξ(x + 2π) = ξ(x) + 2π for all x ∈ R. Group
multiplication on BVir(S1) is defined by

(ξ, α)(η, β) = (ξ ◦ η, α+ β +B(ξ, η)),

where B : Diff+(S1) ×Diff+(S1) → R is the Bott-Thurston two-
cocycle defined by

B(ξ, η) =
∫
S1

log ∂x(ξ ◦ η)d log ∂xη.

∂xξ is the derivative of ξ on R.
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The Lie algebra v(S1) := X(S1)×R of BVir(S1), called the Virasoro
algebra, has the bracket

[(v, a), (w, b)] = ([v, w], C(v, w)),

where [v, w] := (∂xv)w−(∂xw)v is the negative Jacobi-Lie bracket of
the vector fields v, w ∈ X(S1), identified with 2π-periodic real valued
functions on R, and C : X(S1) × X(S1) → R is the Gelfand-Fuchs
two-cocycle defined by

C(v, w) = 2
∫
S1

(∂xv)(∂
2
xw)dx.

Identify v(S1)∗ with v(S1) using the weak L2 pairing

〈(v, a), (w, b)〉 :=
∫
S1
v(x)w(x)dx+ ab.

Then the coadjoint action has the expression

Ad∗(ξ,α)(u, c) = ((∂xξ)
2(u ◦ ξ) + 2cS(ξ), c),

where S is the Schwarzian derivative

S(ξ) =
∂3
xξ

∂xξ
−

3

2

[
∂2
xξ

∂xξ

]2
.
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Coadjoint Orbits

O a BVir(S1) coadjoint orbit. Orbit symplectic form at (u, c) ∈ O:

ωO(u, c)(ad∗(v,a)(u, c), ad
∗
(w,b)(u, c))

=
∫
S1
u((∂xv)w − (∂xw)v)dx+ 2c

∫
S1

(∂3
xv)wdx,

where ad∗ denotes the infinitesimal coadjoint action given by

ad∗(v,a)(u, c) = (u∂xv+ v∂xu+ 2c∂3
xv,0).

ωO is invariant under the coadjoint action. Note that

(u̇, ċ) = − ad∗(u,c)(u, c)⇐⇒
{
u̇+ 3uu′+ 2cu′′′ = 0
ċ = 0

}
⇐⇒ KdV .

So KdV is the spatial representation of the L2 geodesic spray.

If (u, c) ∈ O, then ϕ(u,c) : BVir(S1)/BVir(S1)(u,c) → O given by

ϕ(u,c)

(
BVir(S1)(u,c)(ξ, a)

)
= Ad∗

(ξ,a)−1(u, c) is a Fréchet manifold

diffeomorphism, where BVir(S1)(u,c) is the coadjoint isotropy group
of (u, c); the quotient is taken with respect to left multiplication.
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Note that BVir(S1)(u,c) is of the form

BVir(S1)(u,c) = Diff+(S1)(u,c) × R,

therefore we have BVir(S1)/BVir(S1)(u,c) = Diff+(S1)/Diff+(S1)(u,c).

The tangent space at [e] can be identified with the quotient vector

space X(S1)/X(S1)(u,c), where

X(S1)(u,c) = {v ∈ X(S1) | 2u∂xv+ v∂xu+ 2c∂3
xv = 0}

is the Lie algebra of Diff+(S1)(u,c). At [e] ∈ Diff+(S1)/Diff+(S1)(u,c)
the symplectic form ω(u,c) := ϕ∗(u,c)ωO is given by

ω(u,c)([e])([v], [w]) =
∫
S1
u((∂xv)w − (∂xw)v)dx+ 2c

∫
S1

(∂3
xv)wdx,

where [v], [w] ∈ X(S1)/X(S1)(u,c). In addition, r∗ηω(u,c) = ω(u,c),

where rη : Diff+(S1)/Diff+(S1)(u,c) → Diff+(S1)/Diff+(S1)(u,c) is

given by rη([ξ]) := [ξ ◦ η], for any ξ, η ∈ Diff+(S1).
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Coadjoint Orbit Classification

0 1 32

β

Hyp(β, 0)

S1

Hyp(β, 1)
R+

S1 S1 S1

Hyp(β, 2)
R+ × Z2

Hyp(β, 3)
R+ × Z3

Par(0,1) Par(0,2) Par(0,3)

Ell(α, 0) Ell(α, 1) Ell(α, 2)

rellümhcieT

PSU(1, 1) PSU(1, 1)PSU(1, 1)
inclusion

Points on the “comb” and the “floating points” represent the space
of coadjoint orbits for nonzero charge c (Balog, Fehér, Palla [1998]).
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The vertical lines, each of which is parametrized by β > 0, and

labeled by an integer n = 0,1,2, . . ., represent the hyperbolic orbits.

The non-integer points on the horizontal axis represent the ellip-

tic orbits, while the integer points represent those parabolic orbits

Par(ε, n) with ε = 0. The parabolic orbits Par(ε, n) with ε = ±1 and

n = 0,1,2, . . . are represented by the “floating points”. The open

circle at n = 0, β = 0 is an empty point with no corresponding orbit.

The groups under each orbit are the coadjoint isotropy subgroups.

Par(0,1) is special and is related to the universal Teichmüller space.

Consider the particular momentum (1/4,1/4) ∈ v(S1)∗ ∼= v(S1) =

X(S1)×R. The (1/4,1/4)-coadjoint isotropy group is PSU(1,1)×R
and the corresponding orbit is diffeomorphic to Diff+(S1)/PSU(1,1).

If [u], [v] ∈ T[e](Diff+(S1)/PSU(1,1)) = X(S1)/psu(1,1),

ω(1/4,1/4)([e])([u], [v]) =
〈(

1

4
,
1

4

)
,

[(
u,

1

4

)
,

(
v,

1

4

)]〉
=

1

4

∫
S1

(u′v − uv′) +
1

2

∫
S1
u′v′′ =

1

2

∫
S1

(u′+ u′′′)v.
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u and v are taken modulo

psu(1,1) = {a+ b sin(x) + c cos(x) | a, b, c ∈ R}
= {u1e

−ix + u0 + u1e
ix | u0 ∈ R, u1 ∈ C}.

In terms of Fourier series, for

u =
∑
n∈Z

une
inx and v =

∑
n∈Z

vne
inx

we have

ω(1/4,1/4)([e])([u], [v]) = −iπ
∑

n6=−1,0,1

(n3 − n)unvn

which is Diff+(S1) right invariant.

Identify Diff+(S1)/PSU(1,1) with the subgroup Diff+(S1)0; so for
η ∈ Diff+(S1)0 rη is right translation by η on Diff+(S1)0. In addi-
tion, the orbit symplectic structure equals four times the imaginary
part of the Weil-Petersson Hermitian metric: ω(1/4,1/4) = 4ω.

Conclusion: Φ(T0(1)H) is the the completion of the Teichmüller
orbit on which the orbit symplectic form ω(1/4,1/4) is strong.
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THE EULER-WEIL-PETERSSON
EQUATION

gH the Weil-Petersson Riemannian metric on T (1)H; (T (1)H , gH)

is a strong Riemannian Hilbert manifold. gB the Weil-Petersson

Riemannian metric on T (1)B; gB is not everywhere defined.

Weil-Petersson Geodesics on T (1)H

Right invariance of the metric and the fact that it is strong implies:

The Riemannian manifold (T (1)H , gH) is geodesically complete.

The geodesic spray of the metric gH is smooth and there is an

associated Levi-Civita connection. The curvature and Ricci tensors

are bounded operators. Moreover, since the sectional curvature is

negative, there are no conjugate points.
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Weil-Petersson Geodesics on T (1)B

One cannot say very much. The identity map j : T (1)H → T (1)B is
holomorphic but the inverse j−1 is not even continuous, since left
multiplication is not continuous on T (1)B.

The tangent map T[µ]j : T[µ]T (1)H → T[µ]T (1)B is not an iso-

morphism; more precisely, T[µ]j
(
T[µ]T (1)H

)
is striclty included in

T[µ]T (1)B. At the identity we have T[0]j
(
T0T (1)H

)
= H−1,1(D∗), a

space strictly included in T[0]T (1)B = Ω−1,1(D∗).

Recall that the Weil-Petersson metric gB on T (1)B is not every-
where defined, but we have the relation gH = j∗gB on T (1)H. Given
a geodesic γ ⊂ T (1)H with respect to the metric gH, we can con-
sider the curve j ◦ γ ⊂ T (1)B. This curve is smooth with respect
to the Banach manifold structure. Its derivative γ̇ belongs to the
distribution⋃

[µ]∈T (1)B
T0R[µ](H

−1,1(D∗)) = T[µ]j
(
T[µ]T (1)H

)
⊂ TT (1)B.
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The Euler-Weil-Petersson Equation

By Euler-Poincaré reduction, if γ(t) a geodesic of the Weil-Petersson

metric on Φ(T (1)H◦ ), the curve

u(t) := γ̇(t) ◦ γ(t)−1 ∈ Te(Φ(T (1)H◦ )) = g3/2

should formally be a solution of the Euler-Poincaré equation

d

dt

δl

δu
= − ad∗u

δl

δu
,

where l : g3/2 → R, l(u) = ge(u, u)/2 is the Weil-Petersson La-

grangian; this is the Euler-Weil-Petersson (EWP) equation. For

the moment we proceed formally and later discuss the rigorous in-

terpretation of the equation.

The Lagrangian of the EWP Equation: The solution of the

Euler-Poincaré equation formally does not depend on the choice of

the duality pairing.
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The L2 strong pairing on H0(S1) = L2(S1), 〈u, v〉 =
∫
S1 uv for

u, v ∈ L2(S1), extends to a strong pairing between Hs(S1) and

H−s(S1) for any s ∈ R. Therefore the dual space to the closed

subspace gs = {u ∈ Hs(S1) | u(±1) = u(−i) = 0} ⊂ Hs(S1), s > 1/2

is H−s(S1)/N , where N = {v ∈ H−s(S1) | 〈v, u〉 = 0, for all u ∈ gs}.

With respect the L2 pairing, the Weil-Petersson Lagrangian reads

l(u) =
1

8
〈Qop(u), v〉,

where Qop : Hs(S1) → Hs−3(S1), s ∈ R, is the symmetric operator

given by

Qop

∑
n∈Z

une
inx

 =
∑
n∈Z
|n|(n2−1)une

inx =
∑

n6=−1,0,1

|n|(n2−1)une
inx.

Does this formal expression make sense?
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Properties of the Operator Qop: Qop = J ◦(∂3 + ∂) where J is
the Hilbert-transform on S1. Thus, while Qop is not literally a third
order elliptic differential operator, it has similar properties. Namely,
since J : Hs → Hs is an isomorphism for all s and since ∂3 + ∂ is
literally a third order elliptic differential operator, we conclude
(1) Qop : Hs → Hs−3,
(2) Qop(u) ∈ Hs ⇒ u ∈ Hs+3,
(3) ker(Qop) = psu(1,1), and
(4) Im(Qop) =

{∑
n6=−1,0,1 vne

inx
∣∣∣ v−n = vn

}
∩Hs−3(S1).

Study the kernel and image of Qop|gs for s > 1/2. Since ker(Qop) =
psu(1,1) it follows that kerQop|gs = kerQop ∩ gs = {0} because
elements of psu(1,1) that vanish at three points are identically zero.
Thus, Qop|gs is injective.

One proves that Im(Qop|gs) = Im(Qop). Hence Qop : g3/2 →
Im(Qop) ⊂ H−3/2(S1) is an isomorphism.

Conclusion: l is well-defined on g3/2 since u ∈ H3/2(S1) and Qop(u) ∈
H−3/2(S1).
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Formal Derivation of the EWP Equation: With respect to the
L2 pairing, the infinitesimal coadjoint action is

ad∗um = 2mu′+m′u;

more precisely we should write ad∗u[m] = [2mu′ + m′u], where [ ]
denotes the equivalence class modulo N . One can check that
[2mu′+m′u] does not depend on the choice of m ∈ [m].

The functional derivative of l is
δl

δu
= 2Qop(u).

Thus, the Euler-Weil-Petersson equation reads

ṁ+ 2mu′+m′u = 0, m = Qop(u) ∈ H−3/2(S1).

Fundamental Problem: This equation as well as the formula for
the coadjoint action make no sense as written if u ∈ g3/2!

We comment on this difficulty now.
D2H-fest, Bernoulli Center, July 2007

47



Palais: If t > (dimM)/2 and r ≥ −t, pointwise multiplication ex-
tends from C∞(M,R) × C∞(M,R) → C∞(M,R) to a continuous
bilinear map

Ht(M,R)×Hr(M,R)→ Hmin{r,t}(M,R).

In particular, for |r| ≤ t, Hr(M,R) is an Ht(M,R)-module.

(1) The theorem does not apply to our equation.
(2) Try weak form〈

d

dt
m,ϕ

〉
= 〈m, [u, ϕ]〉, ∀ϕ ∈ C∞(S1), m = Qop(u).

This is also not well-defined since on the right hand side there is a
L2 pairing between m ∈ H−3/2 and [u, ϕ] ∈ H1/2.
(3) This difficulty does not occur for the Camassa-Holm (or Euler,
or Euler-alpha) equation. CH: ṁ + 2mu′ + m′u = 0, that is u̇ +
Q−1

op (2mu′+m′u) = 0, where here, m = Qop(u) = (1−α2∂2)u. Since
u ∈ Hs, s > 3/2, we have m ∈ Hs−2 and so, by Palais, 2mu′+m′u ∈
Hs−3. Therefore Q−1

op (2mu′ + m′u) ∈ Hs−1. We also know that
u ∈ C0(I,Hs) ∩ C1(I,Hs−1). Thus, it is meaningful to write the
Camassa-Holm equation in Euler-Poincaré form.
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The Geometric Form of the EWP Equations: The preceding

difficulties disappear if one writes the equations directly in terms of

u without introducing the dual space. In doing so, we will heavily

exploit the fact that the spray of the WP metric is smooth.

γ(x, t) a WP geodesic, for x ∈ S1. Thus, as a function of t, and

thought of as a curve in H3/2, it is smooth because the spray of

the WP metric is smooth. So, γ̇ and γ̈ are well defined. According

to the fact that there is a smooth WP spray, we can write γ̈ +

Γ(γ)(γ̇, γ̇) = 0 for a well defined operator Γ that is quadratic in γ̇.

By definition of u, we have

u(γ(x, t), t) = γ̇(x, t).

This makes sense and defines u ∈ g3/2 because, by Takhtajan-Teo

theory, T (1)H◦ is a group, right multiplication is smooth, and the

tangent space at the identity is g3/2. Now differentiate in t:
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u̇(y, t) + u′(y, t)u(y, t) = γ̈(x, t)

where y = γ(x, t). The term u′(y, t)u(y, t) is well defined in H1/2 by
Palais. From γ̈(x, t) + Γ(γ)(γ̇, γ̇) = 0, we get the geometric form
of the EWP equation

u̇+ uu′+ Γ(u, u) = 0

which is well defined because the geodesic spray is smooth.

Γ(u, u) = −uu′+Q−1
op

(
2Qop(u)u

′+ (Qop(u))
′ u
)

Geodesic spray on TT:

Z(uη) = S ◦ uη −Veruη(F (uη)),

S ∈ X(TS1) is the geodesic spray of the natural metric on S1,
F (u) = Γ(u, u) = Q−1

op (Qop(u)′u−Qop(u′u) + 2Qop(u)u′),
F (uη) = F (uη ◦ η−1) ◦ η.

Still to do: If ut = γ̇t ◦ γ−1
t show γ ∈ C0(I,H3/2) ∩ C1(I,H1/2).

Looks promising.
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