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Motivation: Directed Self-
Assembly at Nano-Scales

 

Colloidal solution of 50nm particles deposited on a 
grooved substrate 
Water evaporates, contact line is pinned at grooves 
Particles dragged into the grooves and self-organize



Application: nano-sensors

Small Resistance
to electric current

Bio-agent is applied 
Particles move

Large Resistance
to electric current



Everything is self-assembly
It would be nice to figure out how Nature works:
G. M. Whitesides and B. Grzybowski, Self-assembly at all 
scales,  Science, 295, 2418–2421  (2002). 
Macro-scales I (many many km): Stars, galaxies etc.
Macro-scales II (many km-km): Clouds, river networks etc.
Macro-scales III (meters-cm): Forests, schools of fish etc.
Meso-scales IV (mm-100 microns): micro-devices, bugs etc.
Micro-scales V (microns- nanometers): nano-devices, proteins etc.

Macro-nano scales: Life on Earth



Self-assembly of round 2mm particles 
t=0 t=5 min

t=10 min t=20 min



Self-assembly of 4 mm stars 

t=1 hr

t=0

t=30 min

t=10 min



Coagulation+Diffusion
M. von Smoluchowski. Drei Vortrage uber Diusion, Brownsche Molekularbewegung und Koagulation von 
Kolloidteilchen. Physik. Zeit., 17, p. 557-585 (1916).
M. von Smoluchowski. Versuch eine mathematischen Theorie der Koagulationskinetik kolloidaler Losungen, 
Z. Physik. Chem. 92, 129-168 (1917).

Round particles, Linear energy, singular solutions

Interacting particles + Diffusion:  
P.J.M. Debye and E. Huckel, Zur Theorie der Elektrolyte: (2): Das Grenzgesetz fur die Elektrische 
Leiftfahrigkeit (On the theory of electrolytes 2: limiting law of electrical conductivity).  Physik. Zeit. 
24, 305 (1923). 

Keller-Segel model of chemotaxis
E.F. Keller and  L.A. Segel, Initiation of slime mold aggregation viewed as an instability. 
J. Theoretical  Biol. 26, 399 (1970)
E.F. Keller and  L.A. Segel  Model for chemotaxis. J. Theoretical  Biol, 225 (1971).
More general than the models considered here: reduces to class discussed here in limiting cases

Mathematical modeling framework: 
Density is advected with velocity proportional to gradient of (potential of 
interaction, concentration of chemical ...)  

Self-Aggregation (swarming) of insects
C. Topaz, A. Bertozzi and M. Lewis, ArXiv: q-bio PE/0504001 (2005). 



Classical Debye-Huckel (etc) Equations

0 = ∆Φ − ρ −γΦ
∂Φ

∂t
+

∂ρ

∂t
+ div (ρu) = D∆ρ u = µ gradΦ

For particles of finite size, mobility can 
depend on density: at maximal density (1)
mobility tends to zero 

µ = 1 − ρ



Model proposed

u = µ(ρ)∇Φ

Potential

Averaged 
Density

µ(ρ) = 1 − ρWe use or µ(ρ) = 1

∂ρ

∂t
+ div (ρu) = D∆ρ

Previous work: 
          is inverse Laplacian or Helmholtz
Our work: H, G are nice functions

H(x) = δ(x)
G(x)

Φ(x) =

∫
G(x − x′)ρ(x′)dx′ = (G ∗ ρ)(x)

ρ(x) =

∫
H(x − x′)ρ(x′)dx′ = (H ∗ ρ)(x)

H(x) =
1

2β
e−|x|/β

G(x) = e
−|x|/α



Blow-up and regularity for positive mobility

ẇi(t) = 0 q̇i(t) = −

N∑

j=1

wjµ
(
ρ
)
G ′(qi − qj)

A closed system of equations emerges

Clumpons!

H(x) = δ(x) G(x) = ∆−1Classical case: 
One dimension: no blow-up, global bound in time for      in        and     in      
 T. Nagai Adv. Math.Sci.Appl 5, 581 (1995); Hillen,Potapov Math Meth. Appl. Sci 27, 
1783 (2004): 
Two or more dimensions - blow up Brenner et al, Nonlinearity 12, 1071 (1999) 

Are singularities bad? Look for 

ρ(x, t) =
N∑

j=1

wj(t)δ(x − qj(t))

ρ(x, t) =
N∑

j=1

wj(t)H(x − qj(t))

q1 q2 q3 q4

w1

w2

w3

w4

L
∞ρ Φ W

σ,p



Diffusion              in our model does not prohibit 
formation of singularities, even in one dimension
Note: Energy remains finite on delta-functions 

D∆ρ
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What are stationary solutions for µ(ρ) = 1 − ρ ?

Two types of stationary solutions

u = µ(ρ)∇Φ = 0Particle velocity

Φ = const ρ = 1

Equilibrium Solutions Jammed Solutions

Unstable 
(purely attractive force) Stable

Physically, we expect: 



Full numerical simulation starting with 
Gaussian initial conditions
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stationary solution

initial condition

t=10

t=20

t=100



Analytical solutions in two dimensions
Look for jammed solution with compact support 

ρ = H ∗ ρ = 1 Linear equation!

Analytical solutions for the case of inverse Helmholtz
An isolated patch with constant strength delta function 

at the boundary 

Polar coordinates Circles Bessel Functions

Elliptic Cylindrical Ellipses Modified Matthew Functions

Elliptic Cylindrical Hyperbolae Matthew Functions

Parabolic Cylindrical Parabolae Parabolic Cylinder Functions

2 D Helmholtz equation  is separable in 4 cases (- cartesian)



Density Spectrum:  Simulation vs Experiment

α = 1

β = 0.1

D = 0.01

K. Mertens, V. P., D. Xia and S. Brueck, J. 
Applied Physics,98, 094309 (2005) .



Theoretical model II: Non-central interaction
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2. Problem statement

We consider continuum evolution of the macroscopic state of a system of
many particles at time t and position x that is defined by an order parameter
κ(x, t), which take values in a vector space V . The vector space has a dual
space V ∗, defined in terms of the L2 pairing

〈· , ·〉 : V × V ∗ %→ R .

For example, scalar functions are dual to densities, one-forms are dual to
two-forms and vector fields are dual to one-form densities.

In addition, we assume that the physical situation dictates a free energy,
which is a functional of the order parameter expressed as E[κ], where square
brackets [ · ] denote dependence which may be spatially nonlocal. That is,
E[κ] may also be a functional of κ; for example, it could depend on the
spatially averaged or filtered value of κ defined later. Hence, the variation of
total integrated energy is given by the pairing,

δE[κ] =

〈
δκ ,

δE

δκ

〉
=

∫
δκ · δE

δκ
,

where dot ( · ) denotes the appropriate pairing of vector and covector indices
of κ to produce a density, an n−form (denoted as Λn) which then may be
integrated to yield a real number. In this setting, we seek evolution equations
for the order parameter κ(x, t) that
(1) respect its vector space property κ ∈ V ;
(2) reduce to gradient flows when κ is a density; and
(3) possess solutions that may aggregate the order parameter κ into “clumpons”
(quenched states) which propagate and interact as singular weak solutions.

Thus we seek evolution equations whose solutions describe a geometric or-
der parameter supported on embedded subspaces of the ambient space. For
example, these solutions may be spatially distributed on curves in 2D, or
on surfaces in 3D. In fact, we seek evolution equations for which these em-
bedded singular solutions are attractors which emerge even from arbitrary
smooth initial conditions, as in the case of the emergent singular densities
for the nonlocal gradient flows studied in [7, 8]. Our ultimate goal is to find
classes of equations that are relevant for the evolution of a macroscopic order
parameter that may be of potential use in the design of directed self-assembly
processes in nanoscience.

Need to consider density (scalar)+ orientation (matrix in SO(3))
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example, these solutions may be spatially distributed on curves in 2D, or
on surfaces in 3D. In fact, we seek evolution equations for which these em-
bedded singular solutions are attractors which emerge even from arbitrary
smooth initial conditions, as in the case of the emergent singular densities
for the nonlocal gradient flows studied in [7, 8]. Our ultimate goal is to find
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parameter that may be of potential use in the design of directed self-assembly
processes in nanoscience.

 Now consider an arbitrary geometric quantity
We want to define equation of motion, based on Darcy’s law 
               velocity is proportional to force
so it reduces to Debye-Huckel equations when
is density (3-form).  
 But what is Darcy’s law for an arbitrary geometric quantity? 
How do we express it for, say, 1-form densities, 2-forms, 
density+orientation etc? 



Diamond operator is antisymmetric: 

Mathematical Digression: Diamond and Gradient
Define a pairing             (for dual things that can be multiplied and integrated,  
like scalars and 3-forms). 
Then, define a diamond operator          for dual objects a and b (it takes two dual 
objects and produces 1-form density): for any vector field  
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as obtained by using,

(3.3) 〈b , £η a〉+ 〈£η b , a〉 = 0 , or, 〈b , a η〉+ 〈b η , a〉 = 0 ,

and the symmetry of the pairing 〈· , ·〉.

Example. For example, if a = A · ∇ and η = η · ∇ are vector fields and
b = B · dx⊗ dnx is a one-form density in Euclidean coordinate notation, we
find for the L2 pairing in one dimension

〈 a , b 〉 =

∫
a b =

∫
(A · B)dnx

In this case, integrating the chain rule identity for contraction ( )

£η(a b) = (£ηa) b + a £ηb

yields, for the density (3-form) £η(a b) with homogeneous boundary con-
ditions,∫

£η(a b) =

∫
div

(
(A · B) η

)
d 3x = 0

=

∫
(£ηa) b + a £ηb

= 〈£ηa , b〉+ 〈a , £ηb〉
= 〈b , £ηa〉+ 〈a , £ηb〉 = −〈b & a , η〉 − 〈a & b , η〉

As expected, (3.2) follows for this case, re-affirming that the diamond oper-
ation is skew-symmetric. In other notation, the intermediate equation may
be rewritten as

0 = 〈£ηa , b〉+ 〈a , £ηb〉 = 〈 adηa , b〉+ 〈a , ad∗ηb〉 ,
where £ηb = ad∗ηb for a one-form density b. In vector notation,

£ηa = adηa = [η , a] = η · ∇A− A · ∇η

and the intermediate equation is verified by integration by parts.
Second, the & operation satisfies the chain rule under the Lie derivative,

(3.4) 〈£ξ (b & a) , η〉 = 〈(£ξ b) & a , η〉+ 〈b & (£ξ a) , η〉.
This property may be verified directly, as

〈£ξ b & a , η〉+ 〈b &£ξ a , η〉 = 〈b ξ η , a〉 − 〈b η ξ , a〉
= 〈a , b (adξ η)〉 = −〈a & b , (adξ η)〉
= −〈ad∗ξ(a & b) , η〉 = −〈£ξ(a & b) , η〉 = 〈£ξ(b & a) , η〉 ,(3.5)
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choose arbitrary ψ which is in the dual space. Then,〈∂κ

∂t
, ψ

〉
=

〈
−£(κ " δE

δκ )#µ[κ] , ψ
〉

=
〈
µ[κ] " ψ ,

(
κ " δE

δκ

)" 〉
=

〈
κ " δE

δκ
, (µ[κ] " ψ)"

〉
= gκ

(
δE

δκ
, ψ

)
(2.29)

This approach opens up a wealth of possibilities for mathematical analysis
of (2.15) since the machinery of Riemannian geometry can now be applied.
However, the disadvantage of this approach is the necessary limitation to
mobilities µ making the bracket symmetric and positive definite, like µ[κ] =
κF [κ]. Nevertheless, the strength of this approach seemingly outweighs its
limitations and it will be addressed in future work.

3. Properties of the diamond operation

The diamond operation " is defined in (2.13) for Lie derivative £η acting
on dual variables a ∈ V and b ∈ V ∗ by

(3.1) 〈b " a , η〉 ≡ − 〈b , £η a〉 =: −〈b , a η〉 ,
where Lie derivative with respect to right action of the diffeomorphisms on
elements of V is also denoted by concatenation on the right. The " opera-
tion is also known as the “dual representation” of this right action of the Lie
algebra of vector fields on the representation space V [17].

When paired with a vector field η, the diamond operation has the following
three useful properties:

(1) It is antisymmetric

〈 b " a + a " b , η〉 = 0 .

(2) It satisfies the chain rule for Lie derivative

〈£ξ (b " a) , η 〉 = 〈 (£ξ b) " a + b " (£ξ a) , η 〉.
(3) It is antisymmetric under integration by parts

〈 db " a + b " da , η 〉 = 0 .

First, the " operation is antisymmetric,

(3.2) 〈b " a , η〉 = −〈a " b , η〉 ,
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upon using 〈b ξ , a η〉+ 〈b ξη , a〉 = 0, implied by (3.3), in the first step.

Finally, the # operation is antisymmetric under integration by parts,

(3.6) 〈 b # da , η〉 = −〈db # a , η〉 ,
as obtained from commutation of the two types of derivative (da)η = d(aη)
and integration by parts,

(3.7) 〈 b , d(aη) 〉+ 〈 db , aη 〉 = 0 .

These three properties of # are useful in computing the explicit forms of the
various geometric gradient flows for order parameters (2.15). Of course, when
the order parameter is a density undergoing a gradient flow, then one recovers
HP from (2.15).

4. Existence of singular solutions for the GOP equation (2.15)

Let’s choose free energy and mobility E[κ], µ[κ] ∈ H2 and κ ∈ H−1 (which
includes delta functions). For example, one may choose δE/δκ = G ∗ κ and
mobility tensor µ[κ] with κ = H ∗ κ with Helmholtz kernels G and H with
two different length scales, as done for the HP equation (2.2) from (2.2) in
[7, 8].

The geometric order parameter equation (2.15) is then,

∂κ

∂t
= −£(κ # δE

δκ )#µ[κ] ≡ −£v[κ]µ[κ] , with v[κ] ≡
(
κ #δE

δκ

)"
.

When paired with a smooth test function φ dual to κ in L2, the solution κ
satisfies, cf. equations (2.11, 2.12)〈

φ ,
∂κ

∂t

〉
=

〈
φ , −£v[κ]µ[κ]

〉
=

〈
φ # µ[κ] , v[κ]

〉
=

〈
v[κ]# ,

(
φ # µ[κ]

)"
〉

=

〈
κ #δE

δκ
,
(
φ # µ[κ]

)"
〉

(4.1) 〈
φ ,

∂κ

∂t

〉
=

〈
κ , −£(

φ#µ[κ]
)#

δE

δκ

〉
(4.2)
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should have exactly the same value. The rotation isotropy could be broken
in the presence of an external field, for example, if particles have magnetic
moment and external magnetic field is applied.

In Figure 4 we present a numerical simulation for evolution in two dimen-
sions. In this case, there are two unknown variables: the mass density ρ,
which multiplies the basis vector of e0, and orientation ψ which is the co-
efficient of the basis vector e1. We observe that the solution of the initial
value problem starting from two co-oriented confined regions converges to a
radially-symmetric solution.
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11. Appendix: Vector fields and one-form densities

This appendix shows that the GOP equation does not admit singular solu-
tions in general for vector fields and one-form densities,

κ ∈
{

A · dx⊗ d3x, w · ∂

∂x

}
,

by computing the diamond operations for them in a Euclidean basis on R3.
The Lie derivatives are

−£v (A · dx⊗ d3x) = − (
∂j(v

jAi) + Aj∂iv
j
)
dxi ⊗ d3x

= −
(
div

(
v ⊗A

)
+

(∇v
)T · A

)
· dx⊗ d3x ,

= − ad∗v A , with A = A · dx⊗ d3x ,

−£v

(
w · ∂

∂x

)
= (w ·∇v − v ·∇w) · ∂

∂x

= − adv w , with w = w · ∂

∂x
.(11.1)

 Explicit examples of diamond operator - RHS multiplied by 
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These include the cases that admit singular solutions when the middle forms
are closed, that is, when curlA and divB vanish.

In Euclidean coordinates, the Lie derivatives are:

−£v f = −v ·∇ f ,

−£v (A · dx) = − (
(v ·∇)A + Aj∇vj

) · dx

= (v × curlA−∇(v · A)) · dx ,

−£v (B · dS) = − d
(
v (B · dS)

)− v d(B · dS)

= − d
(
(v ×B) · dx

)− v (div Bd 3 x)

= (curl (v ×B)− v div B) · dS ,

−£v (D d3x) = −∇ · (Dv) d3x .(5.2)

Here, in three dimensional vector notation, d(A · dx) = curlA · dS = 0 and
d(B·dS) = div B d 3x = 0 for these two closed forms.

Next, we will need explicit formulas for the diamond operation ($) for these
differential forms. Having those fomulas, we may express various represen-
tations of the geometric order parameter equations and find the dynamics of
their singular solutions (generalized clumpons) by direct substitution. These
will all be special cases of the general equation (2.15) which provides the
singular solutions for any geometric order parameter κ.

We compute from the definition of diamond (2.13) that

f $ δE

δf
=

δE

δf
∇f

A $ δE

δA
=

δE

δA
× curlA− A div

δE

δA

B $ δE

δB
= B× curl

δE

δB
− δE

δB
div B

D $ δE

δD
= −D∇δE

δD
(5.3)

Hence, for functions we have,〈
f $ δE

δf
,
(
φ $ µ[f ]

)!
〉

= −
〈(δE

δf
∇f

)
, (φ∇µ[f ])!

〉
(5.4)
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tations of the geometric order parameter equations and find the dynamics of
their singular solutions (generalized clumpons) by direct substitution. These
will all be special cases of the general equation (2.15) which provides the
singular solutions for any geometric order parameter κ.

We compute from the definition of diamond (2.13) that

f $ δE

δf
=

δE

δf
∇f

A $ δE

δA
=

δE

δA
× curlA− A div

δE

δA

B $ δE

δB
= B× curl

δE

δB
− δE

δB
div B

D $ δE

δD
= −D∇δE

δD
(5.3)

Hence, for functions we have,〈
f $ δE

δf
,
(
φ $ µ[f ]

)!
〉

= −
〈(δE

δf
∇f

)
, (φ∇µ[f ])!

〉
(5.4)

 is a scalar
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These include the cases that admit singular solutions when the middle forms
are closed, that is, when curlA and divB vanish.
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〉
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 is a one-form 
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Next, we will need explicit formulas for the diamond operation ($) for these
differential forms. Having those fomulas, we may express various represen-
tations of the geometric order parameter equations and find the dynamics of
their singular solutions (generalized clumpons) by direct substitution. These
will all be special cases of the general equation (2.15) which provides the
singular solutions for any geometric order parameter κ.

We compute from the definition of diamond (2.13) that
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These include the cases that admit singular solutions when the middle forms
are closed, that is, when curlA and divB vanish.

In Euclidean coordinates, the Lie derivatives are:
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 is a two-form 
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These include the cases that admit singular solutions when the middle forms
are closed, that is, when curlA and divB vanish.
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Here, in three dimensional vector notation, d(A · dx) = curlA · dS = 0 and
d(B·dS) = div B d 3x = 0 for these two closed forms.
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differential forms. Having those fomulas, we may express various represen-
tations of the geometric order parameter equations and find the dynamics of
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singular solutions for any geometric order parameter κ.
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In Euclidean coordinates, the Lie derivatives are:
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−£v (A · dx) = − (
(v ·∇)A + Aj∇vj

) · dx

= (v × curlA−∇(v · A)) · dx ,
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v (B · dS)

)− v d(B · dS)

= − d
(
(v ×B) · dx
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Here, in three dimensional vector notation, d(A · dx) = curlA · dS = 0 and
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tations of the geometric order parameter equations and find the dynamics of
their singular solutions (generalized clumpons) by direct substitution. These
will all be special cases of the general equation (2.15) which provides the
singular solutions for any geometric order parameter κ.

We compute from the definition of diamond (2.13) that

f $ δE
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=

δE

δf
∇f

A $ δE

δA
=

δE

δA
× curlA− A div
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δA

B $ δE
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= B× curl
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div B
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δD
= −D∇δE

δD
(5.3)

Hence, for functions we have,〈
f $ δE

δf
,
(
φ $ µ[f ]

)!
〉

= −
〈(δE

δf
∇f

)
, (φ∇µ[f ])!

〉
(5.4)

For one forms we have,〈
A $ δE

δA
,
(
φ $ µ[A]

)!
〉

(5.5)

= −
〈(δE

δA
× curlA− A div

δE

δA

)
·
(
φ× curl µ[A]− µ[A] div φ

)!
〉

 is a three-form 
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Next, we will need explicit formulas for the diamond operation ($) for these
differential forms. Having those fomulas, we may express various represen-
tations of the geometric order parameter equations and find the dynamics of
their singular solutions (generalized clumpons) by direct substitution. These
will all be special cases of the general equation (2.15) which provides the
singular solutions for any geometric order parameter κ.

We compute from the definition of diamond (2.13) that
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=

δE

δf
∇f

A $ δE

δA
=

δE

δA
× curlA− A div
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= B× curl
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− δE
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div B

D $ δE
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= −D∇δE
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(5.3)

Hence, for functions we have,〈
f $ δE

δf
,
(
φ $ µ[f ]

)!
〉

= −
〈(δE

δf
∇f

)
, (φ∇µ[f ])!

〉
(5.4)

For one forms we have,〈
A $ δE

δA
,
(
φ $ µ[A]

)!
〉

(5.5)

= −
〈(δE

δA
× curlA− A div

δE

δA

)
·
(
φ× curl µ[A]− µ[A] div φ

)!
〉

Let us also define operators relating of lowering and raising indices (no metric)(
A · dx⊗ d3x

)!
= A · ∂

∂x(
B · ∂

∂x

)"

= B · dx⊗ d3x

1

(
A · dx⊗ d3x

)!
= A · ∂

∂x(
B · ∂

∂x

)"

= B · dx⊗ d3x

1



Motivating the answer 

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ
 Arbitrary Geometric
 Quantity 

 Density
(n-form)

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ

Final answer 
must be

η(φ) = ρ∇φ

δρ = −£η(φ)µ〈∂ρ

∂t
, φ

〉
=

〈
δρ ,

δE

δρ

〉
=

〈
− £η(φ) µ ,

δE

δρ

〉
=

〈
− div µη(φ) ,

δE

δρ

〉
=

〈
η(φ) , µ grad

δE

δρ

〉
=

〈(
µ grad

δE

δρ

)#
, η(φ)$

〉
=

〈(
µ grad

δE

δρ

)#
, ρ gradφ

〉
=

〈
− div

(
ρ
(
µ grad

δE

δρ

)#
)

, φ

〉
〈

∂ρ

∂t
, φ

〉
=

〈
− £(µ∇ δE

δρ )#ρ, φ

〉
(0.1)

∂ρ

∂t
= −£(ρ∇ δE

δρ )#µ[ρ] = −div
(

ρ
(
µ[ρ]∇ δE

δρ

)#
)

.(0.2)

η(φ) = κ # φ

δκ = −£η(φ)µ

〈∂κ

∂t
, φ

〉
=

〈
δκ ,

δE

δκ

〉
=

〈δE

δκ
, −£η(φ) µ

〉
= −

〈
µ # δE

δκ
, η(φ)

〉
=

〈(
µ # δE

δκ

)
, (κ # φ )#

〉
(0.3)

=
〈
(φ # κ ),

(
µ # δE

δκ

)#〉
〈∂κ

∂t
, φ

〉
=

〈
− £(µ " δE

δκ )#κ, φ
〉

(0.4)

∂κ

∂t
= −£(µ" δE

δκ )#κ .(0.5)

1

Darcy’s velocity

2

u =
(

µ∇δE

δρ

)!

∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u =
(

µ # δE

δκ

)!

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ〈∂κ

∂t
, φ

〉
=

〈− £(µ! δE
δκ )#κ , φ

〉
=

〈
κ # φ , (µ # δE

δκ
)!

〉
=

〈
κ , £(µ! δE

δκ )#φ
〉

.(0.6)

Mobility     is of the 
same type as 

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ
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δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ

2

u =
(

µ∇δE

δρ

)!

∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u =
(

µ # δE

δκ

)!

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ〈∂κ

∂t
, φ

〉
=

〈− £(µ! δE
δκ )#κ , φ

〉
=

〈
κ # φ , (µ # δE

δκ
)!

〉
=

〈
κ , £(µ! δE

δκ )#φ
〉

.(0.6)



Simulation of Geometric Order Parameter (GOP)  
equation for orientation 

2D simulation
Initial conditions are 
given by an isolated 
patch with random 
orientation



 Theorem [Collapse of singular solutions]: There exist initial conditions for scalar 
equation for which singular solutions collapse (merge) in finite timeINTERACTION OF PARTICLES WITH NON-CENTRAL POTENTIAL: GEOMETRIC CONTINUUM THEORY 33
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Figure 2. Collapse of a solution with initial condition having two δ-functions with equal
strength, opposite in sign f(x, 0) = p0 (δ(x− q0)− δ(x + q0)) with p0 = 1/8, q0 = 2. Exact
solution is shown with a solid line, results of numerics is given with a dashed line.

We illustrate the validity of this prediction in Fig. 3

The equations for the singular-solution parameters pa and qa for the other
quantities in equation (7.3) may be found the same way, by substituting
the solution ansatz (7.3) above into the formulas (2.15,4.2,7.2) and matching
terms. The density case recovers previous results for the HP equation and
the other two cases are a bit more complicated.

8. Counterexample: when necessary is not sufficient

Suppose the right hand side of (4.2) for the case (5.6) only contains terms in
φ and div φ. That is, suppose no terms enter on the right hand side of (5.6)
involving the mixed components in ∇φ.

Simulation of two singular solutions 
with opposite amplitudes collapsing 
in finite time.
(Solid -theory, dashed-simulation) 
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variables a ∈ V and b ∈ V ∗ by

〈£ηa , b〉 = 〈η , a % b〉 = −〈a , £ηb〉 = −〈η , b % a〉(2.13)

As before, the sharp (") operation raises indices in the key third step (2.11),
which defines the velocity vector field u(φ) = − (φ % µ[κ] )" in terms of the
mobility functional µ[κ] ∈ V and the diamond operation. This is the gener-
alization of mobility in equation (2.6) from a density to an arbitrary vector
quantity,

u(φ) = − (φ % µ[κ] )" .(2.14)

The last step used by (2.12) is the definition of the diamond operation to
express the Lie derivative of the mobility £vµ[κ] with respect to the vector
field v = (κ % δE

δκ )".

Thus we obtain the geometric order parameter (GOP) equation,

∂κ

∂t
= −£(κ % δE

δκ )#µ[κ] .(2.15)

Of course, when the order parameter is a density κ = ρ ∈ Λn, then diamond
becomes gradient, the Lie derivative becomes a divergence and one recovers
the HP equation of [7, 8]. Thus, the GOP equation (2.15) generalizes the
concept of gradient flow of a density to “diamond flow” of any geometric
quantity. The corresponding energy equation follows from (2.15) as

dE

dt
=

〈∂κ

∂t
,

δE

δκ

〉
=

〈
−£(κ % δE

δκ )#µ[κ],
δE

δκ

〉
= −

〈(
κ % δE

δκ

)
,
(
µ[κ] % δE

δκ

)"
〉

(2.16)

In what follows, we shall consider several other forms of this equation for
geometric order parameters in various vector spaces. The explicit forms of
these GOP equations and their corresponding energetics need to be calculated
using the definition of diamond and its properties.

2.4. Dissipative bracket and its properties. The form of dissipation
(2.16) leads naturally to the introduction of a dissipative bracket
of two functionals {{E , F }} by using the diamond pairings in the

 Theorem [Energy dissipation]: Energy E is evolving according to 

14 D. D. HOLM AND V. PUTKARADZE

variables a ∈ V and b ∈ V ∗ by

〈£ηa , b〉 = 〈η , a % b〉 = −〈a , £ηb〉 = −〈η , b % a〉(2.13)
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express the Lie derivative of the mobility £vµ[κ] with respect to the vector
field v = (κ % δE
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Of course, when the order parameter is a density κ = ρ ∈ Λn, then diamond
becomes gradient, the Lie derivative becomes a divergence and one recovers
the HP equation of [7, 8]. Thus, the GOP equation (2.15) generalizes the
concept of gradient flow of a density to “diamond flow” of any geometric
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=
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In what follows, we shall consider several other forms of this equation for
geometric order parameters in various vector spaces. The explicit forms of
these GOP equations and their corresponding energetics need to be calculated
using the definition of diamond and its properties.

2.4. Dissipative bracket and its properties. The form of dissipation
(2.16) leads naturally to the introduction of a dissipative bracket
of two functionals {{E , F }} by using the diamond pairings in the

 Theorem [Existence of singular solutions-necessary conditions]:   The weak 
form of the GOP  equation contains only values and first derivatives of the arbitrary 
function so singular solutions may exist 

2

u = µ∇δE

δρ
∂ρ

∂t
= −£uρ

∂ρ

∂t
= −div (ρu)

u = µ # δE

δκ

∂κ

∂t
= −£uκ

∂κ

∂t
= −£µ! δE

δκ
κ

ρdnx

κ〈∂κ

∂t
, φ

〉
=

〈− £(µ! δE
δκ )#κ , φ

〉
=

〈
κ # φ , (µ # δE

δκ
)!

〉
=

〈
κ , £(µ! δE

δκ )#φ
〉

.(0.6)



Metric formulation

the equations in an alternative bracket form. The corresponding energy equation follows from
(8) as

dE

dt
=

〈∂κ

∂t
,

δE

δκ

〉
=

〈
−£(µ[κ] ! δE

δκ )#κ,
δE

δκ

〉
= −

〈(
µ[κ] " δE

δκ

)
,
(
κ " δE

δκ

)"
〉

. (13)

The formula for energy in (13) suggests the following bracket notation for the time derivative
of a functional F [κ],

dF [κ]

dt
=

〈∂κ

∂t
,

δF

δκ

〉
=

〈
−£(µ[κ] ! δE

δκ )#κ ,
δF

δκ

〉
= −

〈(
µ[κ] " δE

δκ

)
,
(
κ " δF

δκ

)"
〉

=: {{E , F }}[κ] (14)

The properties of the GOP brackets {{E , F }} defined in equation (14) are determined by the
diamond operation and the choice of the mobility µ[κ]. For physical applications, one should
choose a mobility that satisfies strict dissipation of energy, i.e. {{E , E }} ≤ 0. A particular
example of mobility that satisfies the energy dissipation requirement is µ[κ] = κM [κ], where
M [κ] ≥ 0 is a non-negative scalar functional of κ. (That is, M [κ] is a number.) Requiring
the mobility to produce energy dissipation does not limit the mathematical properties of the
GOP bracket. For example, the dissipative bracket possesses the Leibnitz property with any
choice of mobility. That is, it satisfies the Leibnitz rule for the derivative of a product of
functionals. In addition, the dissipative bracket formulation (14) allows one to reformulate
the GOP equation (4) in terms of flow on a Riemannian manifold with a metric defined
through the dissipation bracket, as discussed in more detail in [11].

Previous dissipative brackets Historically, the use of symmetric brackets for introducing
dissipation into Hamiltonian systems seems to have originated with works of Grmela [16],
Kaufman [17] and Morrison [18]. See [19] for references and further engineering developments.
This approach introduces a sum of two brackets, one describing the Hamiltonian part of the
motion and the other obtained by representing the dissipation with a symmetric bracket
operation involving an entropy defined for that purpose. Being expressed in terms of the
diamond operation ( " ) for an arbitrary geometric order parameter κ, the dissipative bracket
in equation (14) differs from symmetric brackets proposed in earlier work. The geometric
advection law (12) for the order parameter will be shown below to arise from thermodynamic
principles that naturally yield the dissipative bracket (14). Moreover, being written as a Lie
derivative, the equation of motion (12) respects the geometry of the transported quantity. The
dissipative brackets from the earlier literature do not appear to be expressible as a geometric
transport equation in Lie derivative form.

2.3 Thermodynamic and geometric justifications

Equations (12) may be justified using general principles of thermodynamics and geometry.
Consider using an arbitrary functional F in (14) as a basis for the derivation of an equation
for κ. Suppose κ is an observable quantity for a physical system, and that system evolves due
to the inherent free energy E[κ] in the absence of external forces. This is the physical picture
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For an arbitrary functional F, 

defines  Metric Tensor for any two functionals F  and E
and (as we see below) Double Bracket (bracket of a bracket) 

Double Bracket comes from Darcy’s law (force proportional 
to velocity) so it is a way to introduce dissipation in a 
physical system - Lie-Darcy’s dissipation 

Advantages: 
1) Preserves coadjoint motion (modifying velocity) if added 
to inertia in the Euler-Poincare form 
2) Allows singular solutions if mobility is nonlocal function 



Connection to previous work
Double Bracket dissipation introduced before: 
Bloch, Brockett, Ratiu, Comm. Math. Phys, 147, 57-74 (1992) 
Bloch, Krishnaprasad, Marsden, Ratiu, Comm. Math. Phys, 175, 
1-42 (1996); 
Bloch, Brockett and Crouch, Comm. Math. Phys, 187, 357
-373 (1996)

Motivation: Dissipation in Euler equations and list sorting
Brockett, Linear Algebra and Applications, 122,761-777 (1989)
Vallis, Carnevale and Young, J. Fluid Mech, 207, 133-152 (1989)

Why not apply double bracket ideas to kinetic 
equations as a dissipation model? 



Motivation: Mass-spectrometer using Atomic Force Microscope 
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Given the metric (1.4) and a dissipated energy functional E[κ], the time evolution of arbitrary functional
F [κ] is given by [HoPu2007, HoPuTr2007] as

dF

dt
= {{F , E }}[κ] := − gκ (F,E) = −

〈(
µ[κ] " δE

δκ

)
,
(
κ " δF

δκ

)"
〉

X∗×X

, (1.5)

which specifies the dynamics of any functional F [κ], given the the energy dependence E[κ]. The bracket
{{F , E }} is shown to satisfy the Leibnitz product-rule property for a suitable class of mobility functionals
µ[κ] in [HoPu2007, HoPuTr2007]. Eq. (1.5) and positivity of gκ(E,E) imply that the energy E decays in
time until it eventually reaches a critical point, δE/δκ = 0.

Remark 1.1 For densities (dual to functions in the L2 pairing), the Lie derivative is the divergence and its
dual operation is (minus) the gradient. Thus, for densities the symbol diamond ( " ) is replaced by gradient
(∇ ) in the metric defined in Eq. (1.5).

1.4 Plan of the paper and its main results

The definition of the dissipative bracket in Eq. (1.5) for arbitrary functionals {{F , E }}[κ] is the basis for
our present considerations of dissipation in kinetic equations. In this paper we will extend the geometric
dissipation (1.5) to the symplectic case by defining the star ( # ) operator, which is the analogue of diamond
( " ) for symplectic spaces. More precisely, our plan is the following:

• In Sec. 2, we review the key ideas underlying geometric dissipation. We then introduce the dissipative
bracket (2.1) for the Vlasov equation later derive Darcy’s law (2.6) for the dynamics of its zero-th
moment using the properties of the KM bracket (2.4).

• In Sec. 3, we consider the dissipative kinetic equation for anisotropic interactions and derive the
moment dynamics (i.e., the dynamics of macroscopic quantities) by using the cold plasma closure. A
particular case of dynamics of particles on a straight filament is considered. This case recovers Gilbert
dissipation at the macroscopic level.

• In Sec. 4, we compare the method of moments with the Smoluchowski approach and derive the equa-
tions for probability density and generalized momentum. We discuss the similarities and differences
between these results and recent work on the theory of Smoluchowski equation [Co2005].

• Appendix A recalls the details of the Kupershmidt-Manin bracket.

• Appendix B.2 provides a higher-order moment closure approximation for the dissipative-bracket evo-
lution of the densities of mass and orientation.

2 Dissipation in the Vlasov equation and the moment hierarchy

2.1 Dissipative bracket for the Vlasov equation

The dissipative term in equation (1.2) is found by considering the action of the symplectic algebra of a
Hamiltonian vector field Xh associated with a Hamiltonian function h. This action is given on a phase space
density f through the canonical Poisson bracket {· , ·} as follows:

£Xh f = {f, h} =: h · f .

One can check that the dual operator (denoted by #) is still a Poisson bracket [HoPuTr2007]: g #f = {g, f}.
Thus, we introduce the dissipative bracket (1.5)

{{E , F }} = −
〈{

µ[f ] ,
δE

δf

}
,

{
f ,

δF

δf

} 〉
=

〈{
f,

{
µ[f ] ,

δE

δf

}}
,

δF

δf

〉
(2.1)

Mathematically: 
Introducing dissipation into Vlasov’s equation for f(p,q,t) 
(D.D.Holm, V.Putkaradze and C.Tronci, C.R.Acad.Sci Paris, to appear (2007))
For any two functionals E and F define ({ , } is the Lie-Poisson bracket
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2.3 Geometric dissipation for moment dynamics

Consider the following Lie algebra action on Vlasov densities

βn · f := £Xpnβn
f =

{
f, pnβn

}
(no sum)

which is naturally given by the canonical action of the Hamiltonian function

h(q, p) = ⊗n(p dq) βn(q)⊗n∂q = pnβn(q) .

The dual action defines the !n operator, given by〈
f !n g, βn

〉
:=

〈
f, βn · g

〉
=

〈
f # g , pnβn(q)

〉
=

〈∫ {
f, g

}
pn dp , βn

〉
. (2.5)

Consequently, the dissipative bracket for the moments is written as

dF

dt
= {{E , F }} = −

〈∫
pn

{
µ[f ] ,

δE

δf

}
dp,

∫
pn

{
f ,

δF

δf

}
dp

〉

= −
〈

µ[f ]!n
δE

δf
, f !n

δF

δf

〉
.

Upon writing δE/δf = pkβk and δF/δf = pmβm the dissipative bracket becomes

{{E , F }} = −
〈
ad∗βk

µ̃ k+n−1,
(
ad∗αm

Am+n−1
)#

〉
,

where µ̃s(q) :=
∫

psµ[f ] dp. The purely dissipative dynamics for the moments is then given by

∂An

∂t
= ad∗γm

Am+n−1 with γm :=
(
ad∗βk

µ̃ k+m−1

)#
.

Here, the γm are the vector fields representing the velocities carrying the densities Am+n−1.

2.3.1 Darcy’s law

It turns out that the equation for A0 carried along by velocity γ1 is exactly Darcy’s law. Indeed, for ρ := A0

we have
∂ρ

∂t
= £γ1 ρ =

∂

∂q

(
ρ γ1

)
.

If E = E[ρ] and µ̃0 = µ[ρ], then γ1 = (µ̃0 ∂qβ0)# is recognised as the Darcy velocity. Therefore, the density
ρ := A0 evolves according to Darcy’s law, namely

∂ρ

∂t
=

∂

∂q

(
ρ µ[ρ]

∂

∂q

δE

δρ

)
. (2.6)

2.3.2 Two particular cases

Two interesting cases may be considered already at this point for ρ := A0.

• In the first case, one makes Kandrup’s choice for the mobility at the kinetic level µ[f ] = f , so that
Darcy’s law may be written as,

∂ρ

∂t
=

∂

∂q

(
ρ2 ∂

∂q

δE

δρ

)
. (2.7)

Kandrup’s choice applies to the dissipatively induced instability of galactic dynamics [Ka1991]. Equa-
tion (2.7) is the Darcy law description of this type of instability. It has similarity solutions (scale
invariant solutions) when δE/δρ is a monomial in ρ.

Then for arbitrary functional F
 dissipative dynamics is  

A. Kaufman, Phys Lett A, 100, 419-422 (1984),  P.  Morrisson, Phys Lett A, 
100, 419-422 (1984) - general double bracket form
H. Kandrup, Astrophys. J. 380  511-514 (1991); 

diamond (which we denote by !) which may be computed by applying the general definition
as

〈g ! f , h〉 = 〈g , −£Xh
f〉 =

〈[
g , f

]
qp

, h
〉

(66)

for any two functions g and h. Extending the previous discussions, one can write the following
form of GOP dissipative Vlasov equation,

∂f

∂t
+

[
f ,

δH

δf

]
qp

=

[
f ,

[
µ(f) ,

δE

δf

]
qp

]
qp

, (67)

where, in general, the functionals H and E are independent. This equation has the same form
as the equations for a dissipative class of Vlasov plasmas in astrophysics, proposed by Kandrup
[35] to model gravitational radiation reaction. Kandrup’s formulation for an azimuthally
symmetric particle distribution is recovered by choosing a linear phase space mobility µ = αf
with positive constant α and taking E to be Jz[f ] the total azimuthal angular momentum for
the Vlasov distribution f . Equation (67) recovers the dissipative bracket formulations of both
Kaufman [17] and Morrison [18] when E = Hf − S, where S is the Vlasov entropy functional
S =

∫
f log f , the quantity Hf is the single-particle Hamiltonian and µ[f ] = αf . For these

choices, the dissipative Vlasov equation (67) assumes the double bracket form,

∂f

∂t
+

[
f ,

δHf

δf

]
qp

= α

[
f ,

[
f ,

δHf

δf

]
qp

]
qp

. (68)

This is also the Vlasov-Poisson equation in Bloch et al. [12]. However, in contrast to the
choices in [12, 17, 18, 35], the GOP form of the Vlasov equation (67) allows more general
mobilities such as µ[f ] = K ∗ f (which denotes convolution of f with a smoothing kernel
K). The GOP choice has the advantage of recovering the one-particle solution as its singular
solution.

Dissipative semidirect product dynamics The equations derived above consolidate the
idea that any continuum equation in characteristic form,

(∂t + £u) κ = 0 ,

may be modified to include dissipation via the substitution u → u + v, in which v is the
dissipative velocity term expressed in equation (12). This idea may also be extended to the
semidirect product framework presented in [36], in order to include compressible fluid flows
and plasma fluid models such as MHD. Applications of the semidirect product framework
for continuum mechanics are beyond the scope of the present work. However, it would be
interesting to pursue these applications in future investigations. An immediate application of
the semidirect product framework would be an investigation of ideas of selective decay in
the approach to topological equilibria for example in MHD, as first suggested by Taylor
[37] based on work of Woltjer [38] and later elaborated by Moffat [39] and others. A possible
counterpoint would be to treat the additional helicity-conserving geometric force as a means
of driving a magnetic dynamo, rather than relaxing to an equilibrium.

21

Oscillating AFM tip creates particle dynamics
Possibility of separating particles (molecules) based 
on dynamical properties- Important to know dissipation
With Takashi Hikihara (Kyoto University, Engineering) 



Dissipative Vlasov equation for particles with orientation 

Suppose g is the space dual to the Lie algebra so(3) (or more general) 
Define a bracket as in  Gibbons, Holm and Kuppershmidt, 
Phys. Lett A, 90, 281-283 (1982);
ibid, Phys. D, 6, 179-194 (1982/3). 
Taking moments & applying cold plasma closure yields chromohydrodynamics
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• In the second case, one considers the mobility µ[ρ] as a constant (or a functional of ρ), leading to the
equation

∂ρ

∂t
= µ

∂

∂q

(
ρ

∂

∂q

δE

δρ

)
.

This equation is a member of the family of equations that admit singular solutions when δE/δρ = G∗ρ
for an appropriate kernel G [HoPu2005, HoPu2006].

2.4 Summary

This section provided a consistent derivation of Darcy’s law by applying simple first principles to kinetic
theory. Dissipative terms were added to the Vlasov equation which respect the symplectic nature of the
dynamics. The form of density conservation from Darcy’s law (2.6) was studied and analyzed in [HoPu2005,
HoPu2006]. Although we have not discussed it here, the form of Darcy’s law in Eq. (2.6) has particularly
interesting solution behavior when the mobility and energy variation are taken to be nonlocal functions
of the density, say δE/δρ = G ∗ ρ and µ[ρ] = H ∗ ρ for suitably chosen convolution kernels G and H.
In this case, equation (2.6) admits emergent singular solutions distributed along delta functions, which
propagate, interact and eventually all clump together after a finite amount of time [HoPu2005, HoPu2006].
These singular solutions form the backbone of the long-term dynamics of Darcy’s law in this case, when
the mobility and energy variation are taken to be functions of the average density, rather than pointwise
quantities.

Remark 2.2 This moment approach could also be used to obtain dissipative fluid equations. These are
obtained by considering moment motion determined only by the vector field β1 (instead of the whole sequence
of tensors {βn}). In this approach, one should consider the equations for the first two moments and recall
that ad∗β1

Ak = £β1Ak. We shall extend this approach in the next section, where we will formulate a kinetic
description for particles whose self-interaction is anisotropic and depends on the particle orientation in the
configuration space.

3 Dissipative dynamics for particles with anisotropic interaction

3.1 Purely dissipative Vlasov equation using GHK bracket

Following GHK, we introduce a particle distribution which depends not only on the position and momentum
coordinates q and p, but also on an extra coordinate g associated with orientation. The coordinate g belongs
to the dual of a certain Lie algebra g, which for anisotropic interactions would be g = so(3). However, we
shall formulate the problem in a more general context and analyze the case of rotations separately. In the
non-dissipative case, the Vlasov equation is written in terms of a Poisson bracket, which is the direct sum of
the canonical (pq)-bracket and the Lie-Poisson bracket on the Lie algebra g. Explicitly, this Poisson bracket
is written as {

f, h
}

1
:=

{
f, h

}
+

〈
g,

[
∂f

∂g
,
∂h

∂g

]〉
. (3.1)

The non-dissipative Vlasov equation now becomes

∂f

∂t
= −

{
f,

δH

∂f

}
1

= − X̂δH
δf

(f) ,

where we have defined the vector field X̂h associated with the Hamiltonian function h as

X̂h :=
∂h

∂p

∂

∂q
− ∂h

∂q

∂

∂p
+

〈
ad∗∂h

∂g
g,

∂

∂g

〉
= Xh +

〈
ad∗∂h

∂g
g,

∂

∂g

〉
.

The dissipative Vlasov equation is 
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The Vlasov equation is thus a characteristic equation for evolution governed by the flow of the vector
field X̂δH/δf , determined by the action of this vector field on the density f .

One can identify X̂h with h and define an action h · f := X̂h(f), so that its dual operation denoted by
(!) is defined by(

f ! k, h
)

=
(
k,−h · f

)
=

(
k,

{
h, f

}
1

)
=

(
k,

{
h, f

} )
−

(
k,

〈
g,

[
∂f

∂g
,
∂h

∂g

]〉)
= −

(
k,

{
f, h

} )
−

∫ 〈
k ad∗

∂f
∂g

g,
∂h

∂g

〉
dq dp dg

=
( {

f, k
}
, h

)
+

∫
h

∂

∂g
·
(
k ad∗

∂f
∂g

g
)

dq dp dg

=
( {

f, k
}
, h

)
+

∫
h

〈
ad∗

∂f
∂g

g,
∂k

∂g

〉
dq dp dg

=
( {

f, k
}
, h

)
+

∫
h

〈
g,

[
∂f

∂g
,
∂k

∂g

]〉
dq dp dg =

( {
f, k

}
1
, h

)
.

where in the 5th line we have used the following argument

∂

∂g
· ad∗

∂f
∂g

g =
∂

∂gc

(
ga Ca

bc
∂f

∂gb

)
= ĝ bc

∂2f

∂gc ∂gb
= 0 ,

with ĝ bc := ga Ca
bc = −ĝ cb. This is justified by the antisymmetry of Ca

bc and by the symmetry of ∂gc∂gb .
Thus, f ! k = {f, k}1.

Upon applying the same arguments as in the previous Section 2 and making use of the general formulation
of the dissipative bracket (1.5), we find the purely dissipative Vlasov equation in double-bracket form,

∂f

∂t
=

{
f,

{
µ[f ],

δE

∂f

}
1

}
1

. (3.2)

This equation has exactly the same form as in (1.2), but now one substitutes the direct sum Poisson bracket
{· , ·}1 in (3.1) instead of the canonical Poisson bracket {· , ·}. This formulation can now be used to derive the
double-bracket dissipative version of the Vlasov equation for particles undergoing anisotropic interaction.

3.2 Dissipative moment dynamics: the Kupershmidt-Manin approach

To derive the moment dynamics with orientation dependence, we follow the same steps as in the previous
section, beginning by introducing the quantities

An(q, g) :=
∫

pn f(q, p, g) dp with g ∈ g∗ .

One may find the entire hierarchy of equations for these moment quantities and then integrate over g in
order to find the equations for the mass density ρ(q) :=

∫
A0(q, g) dg and the continuum charge density

G(q) =
∫

g A0(q, g) dg. Without the integration over g, such an approach would yield the Smoluchowski
approximation for the density A0(q, g), usually denoted by ρ(q, g). This approach is followed in the Sec. 4,
where the dynamics of ρ(q, g) is presented explicitly.

In this section, we extend the Kupershidt-Manin approach as in GHK to generate the dynamics of
moments with respect to both momentum p and charge g. The main complication is that the Lie algebras
of physical interest (such as so(3)) are not one-dimensional and in general are not Abelian. Thus, in the
general case one needs to use a multi-index notation as in [Ku1987, GiHoTr2005]. We introduce multi-indices
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where the pairing 〈〈 · , · 〉〉 is given by integration over the spatial coordinate q. Now we fix m = 0, n = 1. The
equation for the evolution of F = A0,λ :=

∫
gλ A0 dgdp is found from (3.3) to be

∂A 0,λ

∂t
= ad∗

γ!
1,ν

∫
gν gλ A0 dg +

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(gσ γ %

1,σ)
∂g

]
+

[
∂A0

∂g
,
∂(gσ γ %

0,σ)
∂g

] )〉
dg

=
∂

∂q

(
γ%

1,ν

∫
gν gλ A0 dg

)
+

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(ga γ %

1,a)
∂g

]
+

[
∂A0

∂g
,
∂(ga γ %

0,a)
∂g

] )〉
dg , (3.4)

where we have defined the analogues of Darcy’s velocities:

γ0,ν := µ[f ] !0,ν
δE

δf
=

∫
gν

〈
g,

[
∂µ̃k

∂g
,
∂(ga βa

k)
∂g

]〉
dg =

∫
gν

〈
g,

[
∂µ̃0

∂g
,
∂(ga βa

0 )
∂g

]〉
dg

and

γ1,ν := µ[f ] !1,ν
δE

δf
= ad∗β σ

k

∫
gν gσ µ̃k dg +

∫
gν

〈
g,

[
∂µ̃k+1

∂g
,
∂(ga βa

k)
∂g

]〉
dg

=
∂β σ

0

∂q

∫
gν gσ µ̃0 dg +

∫
gν

〈
g,

[
∂µ̃1

∂g
,
∂(ga βa

0 )
∂g

]〉
dg .

Here we have assumed that the energy functional E depends only on A0,λ (recall that βλ
n := δE/δAn,λ),

so that we may fix k = 0 in the second line. These equations above will be treated as a higher level of
approximation in Appendix B. Now, we further simplify the treatment by discarding all terms in γ1,a, that
is we truncate the summations in equation (3.4) to consider only terms in γ0,0, γ0,a and γ1,0. With this
simplification the equation (3.4) becomes

∂A 0,λ

∂t
= ad∗γ1,0

∫
gλ A0 dg +

∫
gλ

〈
g,

([
∂A0

∂g
,
∂(gσ γ %

0,σ)
∂g

] )〉
dg

=
∂

∂q

(
γ1,0

∫
gλ A0 dg

)
+

∫
gλ

〈
g,

([
∂A0

∂g
,
∂(ga γ %

0,a)
∂g

] )〉
dg , (3.5)

and the expression for γ1,0 is

γ1,0 := µ[f ] !1,0
δE

δf

= ad∗β σ
k

∫
gσ µ̃k dg +

∫ 〈
g,

[
∂µ̃k+1

∂g
,
∂(ga βa

k)
∂g

]〉
dg =

∂β σ
0

∂q

∫
gσ µ̃0 dg .

We now simplify the notation by defining the following dynamic quantities

ρ =
∫

f dg dp , G =
∫

g f dg dp .

Likewise, we define the mobilities as

µρ =
∫

µ[f ] dg dp , µG =
∫

g µ[f ] dg dp .

In terms of these quantities, we may write the following.

Theorem 3.2 The moment equations for ρ and G are given by

∂ρ

∂t
=

∂

∂q

(
ρ

(
µρ

∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉) )
(3.6)

Equations of motion: 
Moments -    Define

12

where the pairing 〈〈 · , · 〉〉 is given by integration over the spatial coordinate q. Now we fix m = 0, n = 1. The
equation for the evolution of F = A0,λ :=

∫
gλ A0 dgdp is found from (3.3) to be

∂A 0,λ

∂t
= ad∗

γ!
1,ν

∫
gν gλ A0 dg +

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(gσ γ %

1,σ)
∂g

]
+

[
∂A0

∂g
,
∂(gσ γ %

0,σ)
∂g

] )〉
dg

=
∂

∂q

(
γ%

1,ν

∫
gν gλ A0 dg

)
+

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(ga γ %

1,a)
∂g

]
+

[
∂A0

∂g
,
∂(ga γ %

0,a)
∂g

] )〉
dg , (3.4)
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Here we have assumed that the energy functional E depends only on A0,λ (recall that βλ
n := δE/δAn,λ),

so that we may fix k = 0 in the second line. These equations above will be treated as a higher level of
approximation in Appendix B. Now, we further simplify the treatment by discarding all terms in γ1,a, that
is we truncate the summations in equation (3.4) to consider only terms in γ0,0, γ0,a and γ1,0. With this
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We now simplify the notation by defining the following dynamic quantities

ρ =
∫

f dg dp , G =
∫

g f dg dp .

Likewise, we define the mobilities as

µρ =
∫

µ[f ] dg dp , µG =
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g µ[f ] dg dp .

In terms of these quantities, we may write the following.

Theorem 3.2 The moment equations for ρ and G are given by
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=
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ρ
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µρ

∂
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δE

δρ
+

〈
µG,

∂

∂q
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δG
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(3.6)
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Assume linearity in g; Integrate with respect to p and g
Neglect all moments involving product pg 
Truncate terms with moments (in p) higher than one
We obtain, at zeroth order - 
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2.3 Geometric dissipation for moment dynamics

Consider the following Lie algebra action on Vlasov densities

βn · f := £Xpnβn
f =

{
f, pnβn

}
(no sum)

which is naturally given by the canonical action of the Hamiltonian function

h(q, p) = ⊗n(p dq) βn(q)⊗n∂q = pnβn(q) .

The dual action defines the !n operator, given by〈
f !n g, βn

〉
:=

〈
f, βn · g

〉
=

〈
f # g , pnβn(q)

〉
=

〈∫ {
f, g

}
pn dp , βn

〉
. (2.5)

Consequently, the dissipative bracket for the moments is written as

dF

dt
= {{E , F }} = −

〈∫
pn

{
µ[f ] ,

δE

δf

}
dp,

∫
pn

{
f ,

δF

δf

}
dp

〉

= −
〈

µ[f ]!n
δE

δf
, f !n

δF

δf

〉
.

Upon writing δE/δf = pkβk and δF/δf = pmβm the dissipative bracket becomes

{{E , F }} = −
〈
ad∗βk

µ̃ k+n−1,
(
ad∗αm

Am+n−1
)#

〉
,

where µ̃s(q) :=
∫

psµ[f ] dp. The purely dissipative dynamics for the moments is then given by

∂An

∂t
= ad∗γm

Am+n−1 with γm :=
(
ad∗βk

µ̃ k+m−1

)#
.

Here, the γm are the vector fields representing the velocities carrying the densities Am+n−1.

2.3.1 Darcy’s law

It turns out that the equation for A0 carried along by velocity γ1 is exactly Darcy’s law. Indeed, for ρ := A0

we have
∂ρ

∂t
= £γ1 ρ =

∂

∂q

(
ρ γ1

)
.

If E = E[ρ] and µ̃0 = µ[ρ], then γ1 = (µ̃0 ∂qβ0)# is recognised as the Darcy velocity. Therefore, the density
ρ := A0 evolves according to Darcy’s law, namely

∂ρ

∂t
=

∂

∂q

(
ρ µ[ρ]

∂

∂q

δE

δρ

)
. (2.6)

2.3.2 Two particular cases

Two interesting cases may be considered already at this point for ρ := A0.

• In the first case, one makes Kandrup’s choice for the mobility at the kinetic level µ[f ] = f , so that
Darcy’s law may be written as,

∂ρ

∂t
=

∂

∂q

(
ρ2 ∂

∂q

δE

δρ

)
. (2.7)

Kandrup’s choice applies to the dissipatively induced instability of galactic dynamics [Ka1991]. Equa-
tion (2.7) is the Darcy law description of this type of instability. It has similarity solutions (scale
invariant solutions) when δE/δρ is a monomial in ρ.
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so that identification of corresponding coefficients yields

ẇρ = 0 ẇG = ad∗
γ0

wG

Q̇ρ = − γ1(Qρ) Q̇G = − γ1(QG)

and the thesis is proven.

Remark 3.5 A similar result applies for the Geometric Order Parameter (GOP) equations investigated in
[HoPu2005, HoPu2006, HoPu2007].

3.4 An application: a straight filament composed of rod-like particles

In this case G = m(x), advw = v ×w and ad∗
vw = −v ×w, and the Lie algebra pairing is represented by

the dot product of vectors in R3. Therefore the equations are

∂ρ

∂t
=

∂

∂x

(
ρ

(
µρ

∂

∂x

δE

δρ
+ µm · ∂

∂x

δE

δm

) )
(3.9)

and

∂m
∂t

=
∂

∂x

(
m

(
µρ

∂

∂x

δE

δρ
+ µm · ∂

∂x

δE

δm

) )
+ m× µm ×

δE

δm
(3.10)

Note that equations for density ρ and orientation m have conservative parts (coming from the divergence of
a flux). In addition, when µm = am for a constant a, the orientation m has precisely the dissipation term
m×m× δE/δm introduced by Gilbert [Gilbert1955]. Thus, we have derived the Gilbert dissipation term
at the macroscopic level, starting from double-bracket dissipative terms in the kinetic theory description.
As far as we know, this is the first time that the Gilbert dissipation term has been derived from a kinetic
theory model.

4 Smoluchowski approach

We shall now turn our attention to the Smoluchowski approach to the description of the interaction of
anisotropic particles. Usually, these particles are assumed to be rod-like, so their orientation can be described
by a point on a two-dimensional sphere S2 [DoEd1988]. However, we shall consider particles of arbitrary
shape, for which one needs the full SO(3) to define their orientation. We shall work with the corresponding
Lie algebra so(3) to conform to our theory.

In the Smoluchowski approach, moments are defined as

An(q, g) :=
∫

pn f(q, p, g) dp .

As in the Kupershmidt-Manin approach explained in Appendix A, these moments are dual to βn(q, g), which
are introduced by expanding the Hamiltonian function h(q, p, g) as h(q, p, g) = pn βn(q, g). The quantities
βn have a Lie algebra bracket given by

[[βn,αm]]1 = [[βn,αm]] +
〈
g,

[
β ′

n,α ′
m

]〉
,

where prime denotes partial derivative with respect to g and we have used the same notation as in section
2.2. The Lie algebra action is given by

βn · f = £bXpnβn
f
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Gilbert dissipation for 
Landau-Lifschitz equation
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where the pairing 〈〈 · , · 〉〉 is given by integration over the spatial coordinate q. Now we fix m = 0, n = 1. The
equation for the evolution of F = A0,λ :=

∫
gλ A0 dgdp is found from (3.3) to be

∂A 0,λ

∂t
= ad∗

γ!
1,ν

∫
gν gλ A0 dg +

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(gσ γ %

1,σ)
∂g

]
+

[
∂A0

∂g
,
∂(gσ γ %

0,σ)
∂g

] )〉
dg

=
∂

∂q

(
γ%

1,ν

∫
gν gλ A0 dg

)
+

∫
gλ

〈
g,

([
∂A1

∂g
,
∂(ga γ %

1,a)
∂g

]
+

[
∂A0

∂g
,
∂(ga γ %

0,a)
∂g

] )〉
dg , (3.4)

where we have defined the analogues of Darcy’s velocities:

γ0,ν := µ[f ] !0,ν
δE

δf
=

∫
gν

〈
g,

[
∂µ̃k

∂g
,
∂(ga βa

k)
∂g

]〉
dg =

∫
gν

〈
g,

[
∂µ̃0

∂g
,
∂(ga βa

0 )
∂g

]〉
dg

and

γ1,ν := µ[f ] !1,ν
δE

δf
= ad∗β σ

k

∫
gν gσ µ̃k dg +

∫
gν

〈
g,

[
∂µ̃k+1

∂g
,
∂(ga βa

k)
∂g

]〉
dg

=
∂β σ

0

∂q

∫
gν gσ µ̃0 dg +

∫
gν

〈
g,

[
∂µ̃1

∂g
,
∂(ga βa

0 )
∂g

]〉
dg .

Here we have assumed that the energy functional E depends only on A0,λ (recall that βλ
n := δE/δAn,λ),

so that we may fix k = 0 in the second line. These equations above will be treated as a higher level of
approximation in Appendix B. Now, we further simplify the treatment by discarding all terms in γ1,a, that
is we truncate the summations in equation (3.4) to consider only terms in γ0,0, γ0,a and γ1,0. With this
simplification the equation (3.4) becomes

∂A 0,λ

∂t
= ad∗γ1,0

∫
gλ A0 dg +

∫
gλ

〈
g,

([
∂A0

∂g
,
∂(gσ γ %

0,σ)
∂g

] )〉
dg

=
∂

∂q

(
γ1,0

∫
gλ A0 dg

)
+

∫
gλ

〈
g,

([
∂A0

∂g
,
∂(ga γ %

0,a)
∂g

] )〉
dg , (3.5)

and the expression for γ1,0 is

γ1,0 := µ[f ] !1,0
δE

δf

= ad∗β σ
k

∫
gσ µ̃k dg +

∫ 〈
g,

[
∂µ̃k+1

∂g
,
∂(ga βa

k)
∂g

]〉
dg =

∂β σ
0

∂q

∫
gσ µ̃0 dg .

We now simplify the notation by defining the following dynamic quantities

ρ =
∫

f dg dp , G =
∫

g f dg dp .

Likewise, we define the mobilities as

µρ =
∫

µ[f ] dg dp , µG =
∫

g µ[f ] dg dp .

In terms of these quantities, we may write the following.

Theorem 3.2 The moment equations for ρ and G are given by

∂ρ

∂t
=

∂

∂q

(
ρ

(
µρ

∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉) )
(3.6)
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and

∂G

∂t
=

∂

∂q

(
G

(
µρ

∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉) )
+ ad∗„

ad∗δE
δG

µG

«" G . (3.7)

Remark 3.3 Equations in this family (called Geometric Order Parameter equations) were derived via a
different approach in [HoPu2005, HoPu2006, HoPu2007].

3.3 Singular solutions

Equations (3.6) and (3.7) admit singular solutions. This means that the trajectory of a single fluid particle
is a solution of the problem and all the microscopic information about the particles is preserved. We shall
prove the following.

Theorem 3.4 Equations (3.6) and (3.7) admit solutions of the form

ρ(q, t) = wρ(t) δ(q −Qρ(t))
G(q, t) = wG(t) δ(q −QG(t)) (3.8)

where wρ, Qρ, wG and QG undergo the following dynamics

ẇρ = 0 ẇG = ad∗
γ0

wG

Q̇ρ = −
(

µρ
∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉)
q=Qρ

Q̇G = −
(

µρ
∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉)
q=QG

Proof. After defining the quantities

γ1 := γ1,0 = µρ
∂

∂q

δE

δρ
+

〈
µG,

∂

∂q

δE

δG

〉
γ0 := γ#

0,a ea =
(
ad∗δE

δG
µG

)#

we pair equations (3.6) and (3.7) respectively with φρ(q) and φG(q). We obtain the following results,∫
ρ̇ φρ dq =

∫
φρ

∂

∂q

(
ρ γ1

)
dq

= −
∫

∂φρ

∂q
ρ γ1 dq

∫ 〈
Ġ, φG

〉
dq =

∫ 〈
∂

∂q

(
G γ1

)
+ ad∗γ0

G, φG

〉
dq

= −
∫ 〈

G, γ1
∂φρ

∂q

〉
dq +

∫ 〈
G,

[
γ0, φρ

]〉
dq

Upon substituting the singular solution ansatz (3.8), one calculates

ẇρ φρ(Qρ) + wρ Q̇ρ
∂φρ

∂q

∣∣∣∣
q=Qρ

= −wρ γ1(Qρ)
∂φρ

∂q

∣∣∣∣
q=Qρ〈

ẇG, φG(QG)
〉

+ Q̇G

〈
wG,

∂φG

∂q

〉∣∣∣∣
q=QG

= − γ1(QG)
〈

wG,
∂φG

∂q

〉∣∣∣∣
q=QG

+
〈
ad∗

γ0
wG,φ(QG)

〉

Diffusion Lie-Darcy

Evolution equations for density and orientation 

Very cute



Connection to Smoluchowski’s equation
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If we insert the notation

λ0(q, g) =
∂

∂g
·
(

µ0
∂

∂g
· (β0 ĝ )

)
=

∂

∂g
·
(

µ0 ad∗
∂β0
∂g

g

)
= −

{
µ0, β0

}
(4.7)

and similarly, λ1(q, g) = − {µ1, β0}, then we can write the (A0, A1) dynamics more compactly as

∂A0

∂t
=

∂

∂q

(
A0F01

)
+

∂

∂g
·
(

A0 ad∗
∂λ0
∂g

g − A1 ad∗
∂F01

∂g

g

)
(4.8)

and

∂A1

∂t
=

∂

∂q

(
A1F01

)
−A0

∂λ1

∂q
+ A1

∂

∂q
F01 +

∂

∂g
·
(

A1 ad∗
∂λ0
∂g

g − A 2
1

A0
ad∗

∂F01
∂g

g

)
. (4.9)

These equations may also be written in slightly more familiar form by writing the ad∗ operations
explicitly in terms of derivatives on the Lie algebra,

∂A0

∂t
=

∂

∂q

(
A0F01

)
+

∂

∂g
·
(

A0
∂

∂g
· ( ĝ λ0) − A1

∂

∂g
· ĝF01

)
(4.10)

and

∂A1

∂t
=

∂

∂q

(
A1F01

)
−A0

∂λ1

∂q
+ A1

∂

∂q
F01 +

∂

∂g
·
(

A1
∂

∂g
· ( ĝ λ0 ) − A 2

1

A0

∂

∂g
· (ĝF01)

)
(4.11)

Remark 4.2 (Relation to Smoluchowski equations)
A connection may exist between the nonlinear “diffusion” term divg (Gf) in equation (6) in [Co2005], where
subscript g denotes the metric on S2 and G = ∇g U + W for some scalar U and a vector field W on
S2. In our formulation, g is an element of Lie algebra g, not of the Lie group, our terms are of the type
divg

(
A0 divg F̄

)
, where F̄ is a (0, 2) antisymmetric tensor over the Lie algebra g. It is not possible for this

tensor to be diagonal.

In addition, classical Smoluchowski equations in [Co2005] do not have the A1 contribution of the in-
herent particle momentum. Instead, they couple the evolution of A0 to the ambient fluid motion described
by a variant of the Navier-Stokes equations. In our approach, no ambient fluid motion is imposed, rather
the continuum flow is induced by the dynamics of orientation, leading to the induced momentum A1. The
presence of A1 is another difference between the physical interpretation of our approach and the classi-
cal Smoluchowski treatment. The meaning of these differences between our results and the Smoluchowski
approach [Co2005] will be pursued further in future work.

5 Summary and outlook

The double-bracket Vlasov moment dynamics discussed here provides an alternative to both the variational-
geometric approach of [HoPu2007] and the Smoluchowski treatment reviewed in [Co2005]. These are early
days in this study of the benefits afforded by the double-bracket approach to Vlasov moment dynamics.
However, the derivations of the Darcy law in (2.6) and the Gilbert dissipation term in (3.10) by this approach
lends hope that this direction will provide the systematic derivations needed for modern technology of
macroscopic models for microscopic processes involving interactions of particles that depend on their relative
orientations. Although some of these formulas may look daunting, they possess an internal consistency and
systematic derivation that we believe is worth pursuing further. Our next steps will be the following:
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· (ĝF01)

)
(4.11)

Remark 4.2 (Relation to Smoluchowski equations)
A connection may exist between the nonlinear “diffusion” term divg (Gf) in equation (6) in [Co2005], where
subscript g denotes the metric on S2 and G = ∇g U + W for some scalar U and a vector field W on
S2. In our formulation, g is an element of Lie algebra g, not of the Lie group, our terms are of the type
divg

(
A0 divg F̄

)
, where F̄ is a (0, 2) antisymmetric tensor over the Lie algebra g. It is not possible for this

tensor to be diagonal.
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herent particle momentum. Instead, they couple the evolution of A0 to the ambient fluid motion described
by a variant of the Navier-Stokes equations. In our approach, no ambient fluid motion is imposed, rather
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presence of A1 is another difference between the physical interpretation of our approach and the classi-
cal Smoluchowski treatment. The meaning of these differences between our results and the Smoluchowski
approach [Co2005] will be pursued further in future work.

5 Summary and outlook

The double-bracket Vlasov moment dynamics discussed here provides an alternative to both the variational-
geometric approach of [HoPu2007] and the Smoluchowski treatment reviewed in [Co2005]. These are early
days in this study of the benefits afforded by the double-bracket approach to Vlasov moment dynamics.
However, the derivations of the Darcy law in (2.6) and the Gilbert dissipation term in (3.10) by this approach
lends hope that this direction will provide the systematic derivations needed for modern technology of
macroscopic models for microscopic processes involving interactions of particles that depend on their relative
orientations. Although some of these formulas may look daunting, they possess an internal consistency and
systematic derivation that we believe is worth pursuing further. Our next steps will be the following:

Do not integrate with respect to g 
 (only moments in p) 

Use cold plasma approximation 
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A0, A1, . . . , Ak+m. Such extensions are possible, but they lead to very cumbersome calculations and there
is no clear physical way of justifying the closure. For A1, we obtain the following equation:

∂A1

∂t
= ad∗γ0

A0 + ad∗γ1
A1 + {A1, γ0}+ {A2, γ1}

= A0
∂γ0

∂q
+ £γ1A1 + {A1, γ0}+ {A2, γ1}

where A1 is a one-form density in the position space (from the moment theory), and the Lie derivative has
to be computed accordingly. We introduce the cold-plasma approximation (cf. equation (B.4))

f(q, p, g) = A0(q, g) δ

(
p− A1(q, g)

A0(q, g)

)
so that

A2 =
A 2

1

A0

and the equation for A1 closes to become

∂A1

∂t
= A0

∂γ0

∂q
+ £γ1A1 +

{
A1, γ0

}
+

{
A2

1

A0
, γ1

}
.

The final bracket form of the moment equations is thus

∂A0

∂t
=

∂

∂q

(
A0

(
µ0

∂β0

∂q
+

{
µ1, β0

}))
+

{
A0,

{
µ0, β0

}}
+

{
A1,

(
µ0

∂β0

∂q
+

{
µ1, β0

})}
(4.2)

and

∂A1

∂t
= A0

∂

∂q

{
µ0, β0

}
+

(
µ0

∂β0

∂q
+

{
µ1, β0

})
∂A1

∂q
+ 2A1

∂

∂q

(
µ0

∂β0

∂q
+

{
µ1, β0

})
+

{
A1,

{
µ0, β0

}}
+

{
A 2

1

A0
,

(
µ0

∂β0

∂q
+

{
µ1, β0

})}
(4.3)

These equations contain spatial gradients combined with both single and double Poisson brackets. By
defining a flux

F01 = µ0
∂β0

∂q
+

{
µ1, β0

}
(4.4)

the previous equations may be written compactly as

∂A0

∂t
=

∂

∂q

(
A0F01

)
+

{
A0,

{
µ0, β0

}}
+

{
A1, F01

}
(4.5)

and

∂A1

∂t
=

∂

∂q

(
A1F01

)
+ A0

∂

∂q

{
µ1, β0

}
+ A1

∂F01

∂q
+

{
A1,

{
µ0, β0

}}
+

{
A 2

1

A0
, F01

}
(4.6)

4.2 Divergence form

At this point we introduce the following
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so that identification of corresponding coefficients yields

ẇρ = 0 ẇG = ad∗
γ0

wG

Q̇ρ = − γ1(Qρ) Q̇G = − γ1(QG)

and the thesis is proven.

Remark 3.5 A similar result applies for the Geometric Order Parameter (GOP) equations investigated in
[HoPu2005, HoPu2006, HoPu2007].

3.4 An application: a straight filament composed of rod-like particles

In this case G = m(x), advw = v ×w and ad∗
vw = −v ×w, and the Lie algebra pairing is represented by

the dot product of vectors in R3. Therefore the equations are

∂ρ

∂t
=

∂

∂x

(
ρ

(
µρ

∂

∂x

δE

δρ
+ µm · ∂

∂x

δE

δm

) )
(3.9)

and

∂m
∂t

=
∂

∂x

(
m

(
µρ

∂

∂x

δE

δρ
+ µm · ∂

∂x

δE

δm

) )
+ m× µm ×

δE

δm
(3.10)

Note that equations for density ρ and orientation m have conservative parts (coming from the divergence of
a flux). In addition, when µm = am for a constant a, the orientation m has precisely the dissipation term
m×m× δE/δm introduced by Gilbert [Gilbert1955]. Thus, we have derived the Gilbert dissipation term
at the macroscopic level, starting from double-bracket dissipative terms in the kinetic theory description.
As far as we know, this is the first time that the Gilbert dissipation term has been derived from a kinetic
theory model.

4 Smoluchowski approach

We shall now turn our attention to the Smoluchowski approach to the description of the interaction of
anisotropic particles. Usually, these particles are assumed to be rod-like, so their orientation can be described
by a point on a two-dimensional sphere S2 [DoEd1988]. However, we shall consider particles of arbitrary
shape, for which one needs the full SO(3) to define their orientation. We shall work with the corresponding
Lie algebra so(3) to conform to our theory.

In the Smoluchowski approach, moments are defined as

An(q, g) :=
∫

pn f(q, p, g) dp .

As in the Kupershmidt-Manin approach explained in Appendix A, these moments are dual to βn(q, g), which
are introduced by expanding the Hamiltonian function h(q, p, g) as h(q, p, g) = pn βn(q, g). The quantities
βn have a Lie algebra bracket given by

[[βn,αm]]1 = [[βn,αm]] +
〈
g,

[
β ′

n,α ′
m

]〉
,

where prime denotes partial derivative with respect to g and we have used the same notation as in section
2.2. The Lie algebra action is given by

βn · f = £bXpnβn
fOur variables g are on Lie Algebra - not Lie group (2-sphere)

Compare with e.g. P. Constantin, Comm. Math. Sci, 3, 531-544 (2005)

Certain similarities are apparent but our tensors     are antisymmetric, so 
equations look different

∂A0

∂t
= ∂g [∂gA0 − A0∂g (G ∗ A0)]

1

∂A0

∂t
= ∂g [∂gA0 − A0∂g (G ∗ A0)]

ĝ

1



Summary
1)We derived new equations for self-organizations of oriented particles
    from general conservation principles 
2) We suggested a dissipative Vlasov equation with the dissipation preserving 
    weak solutions 
3) We derived a new dissipative equations for momenta - Lie-Darcy dissipation
4) We suggested a kinetic origin of Gilbert dissipation in Landau-Lifshitz 
equations

Future work
1) Study the appearance and dynamics of the generalized solutions to the new 
    dissipative kinetic equations 
2) Study singular solutions in the new Lie-Darcy dissipative equations
3) Applications to self-organization and protein dynamics


