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Water evaporates, contact line is pinned at grooves

grooved substrate
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Application: nano-sensors
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Everything is self-assembly

It would be nice to figure out how Nature works:
G. M. Whitesides and B. Grzybowski, Self-assembly at all
scales, Science, 295, 2418-2421 (2002).

Macro-scales I (many many km): Stars, galaxies efc.
Macro-scales II (many km-km): Clouds, river networks etc.
Macro-scales III (meters-cm): Forests, schools of fish etc.
Meso-scales IV (mm-100 microns): micro-devices, bugs etc.
Micro-scales V (microns- nanometers): nano-devices, proteins etc.

Macro-nano scales: Life on Earth



Self-assembly of round 2mm particles




Self-assembly of 4 mm stars




Round particles, Linear energy, singular solutions

Mathematical modeling framework:
Density is advected with velocity proportional to gradient of (potential of
interaction, concentration of chemical ...)

Interacting particles + Diffusion:

P.J.M. Debye and E. Huckel, Zur Theorie der Elektrolyte: (2): Das Grenzgesetz fur die Elektrische

Leiftfahrigkeit (On the theory of electrolytes 2: limiting law of electrical conductivity). Physik. Zeit.
24,305 (1923).

Coagulation+Diffusion

M. von Smoluchowski. Drei Vortrage uber Diusion, Brownsche Molekularbewegung und Koagulation von
Kolloidteilchen. Physik. Zeit., 17, p. 557-585 (1916).

M. von Smoluchowski. Versuch eine mathematischen Theorie der Koagulationskinetik kolloidaler Losungen
Z.. Physik. Chem. 92, 129-168 (1917).

Keller-Segel model of chemotaxis

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability.

J. Theoretical Biol. 26, 399 (1970)

E.F. Keller and L.A. Segel Model for chemotaxis. J. Theoretical Biol, 225 (1971).

More general than the models considered here: reduces to class discussed here in limiting cases

Self-Aggregation (swarming) of insects
C. Topaz, A. Bertozzi and M. Lewis, ArXiv: g-bio PE/0504001 (2005).



Classical Debye-Huckel (etc) Equations
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- div (pu) = DAp u = pgrad®d
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For particles of finite size, mobility can
depend on density: at maximal density (1)
mobility tends to zero

p=1—=0p



Model proposed

g’; - div (pu) = DAp u=u(p)vVe
Potential P(x) / (x — 2" p(z")dx' = (G * p)(x)
A d _

Szgiiey /H (x — 2" ) p(a")dx’ = (H * p)(x)
Weuse [(p)=1— or [L(p) =

Previous work: H (x) = 6(33)
GG () is inverse Laplacian or Helmholtz
Our work: H, G are nice functions

Gla) = e 1#l/o H(z) = o1/



Blow-up and regularity for positive mobility
Classical case: H(xz) = 6(x) G(r) = A1

One dimension: no blow-up, global bound in time for p in L.°° and ® in W
T. Nagai Adv. Math.Sci.Appl 5,581 (1995); Hillen,Potapov Math Meth.Appl. Sci 27,
1783 (2004):

Two or more dimensions - blow up Brenner et al, Nonlinearity 12, 1071 (1999)

Are singularities bad? Look for w1 w3

plx,t) = ij (t)o(x — g;(t)) J t *

j=1 N d1 92 43 44
p(z,t) = ij (t)H(x — q;(¢)) Clumpons!
j=1

A closed system of equations emerges

wi(t) = 0 §i(t) = —iju(ﬁ)G’(qi—qg')



Diffusion DD Ap in our model does not prohibit
formation of singularities, even in one dimension
Note: Energy remains finite on delta-functions

Clumpons!

H*p
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What are stationary solutions for wu(p) =1 —p ?

Particle velocity u=u(p)Ve =0
Two types of stationary solutions
$ = const p=1
O—0—0—0 O
Equilibrium Solutions Jammed Solutions

Physically, we expect:

Unstable

(purely attractive force) Stable



H*p

Full numerical simulation starting with
Gaussian initial conditions

1.5 T T T T T T T T T
O  stationary solution

initial condition
t=10
t=20
t=100
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Analytical solutions in two dimensions
Look for jammed solution with compact support

p=Hxp=1 Linear equation!

Analytical solutions for the case of inverse Helmholtz
An isolated patch with strength delta function
at the boundary

2 D Helmholtz equation is separable in 4 cases (- cartesian)

Polar coordinates Bessel Functions
Elliptic Cylindrical Modified Matthew Functions
Elliptic Cylindrical Hyperbolae Matthew Functions

Parabolic Cylindrical Parabolae Parabolic Cylinder Functions




Density Spectrum: Simulation vs Experiment

—— Experiment

log, .| S(k)]
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K. Mertens, V. P., D. Xia and S. Brueck, J.
Applied Physics,98, 094309 (2005) .




Theoretical model ll: Non-central interaction

Need to consider density (scalar)+ orientation (matrix in SO(3))

Now consider an arbitrary geometric quantity K(Z, )
We want to define equation of motion, based on Darcy’s law
velocity is proportional to force

so it reduces to Debye-Huckel equations when K(Z, 1)
is density (3-form).

But what is Darcy’s law for an arbitrary geometric quantity?
How do we express it for, say, | -form densities, 2-forms,
density+orientation etc?



Mathematical Digression: Diamond and Gradient

Define a pairing < : > (for dual things that can be multiplied and integrated,
like scalars and 3-forms).

Then, define a diamond operator b ¢ ¢ for dual objects a and b (it takes two dual
objects and produces |-form density): for any vector field 7]

(boa,n) =—(b, £,a)
Diamond operator is antisymmetric: (boa+a<ob, n) =0

Explicit examples of diamond operator - RHS multiplied by - dz ® d°z

f is a scalar fo i—? = i—?Vf
A -dx  isa one-form Ao g—i = g—i X curl A — Adivg—i
B-dS is a two-form Bo g—g = B x cul gg - gg divB
D d3x is a three-form Do g—lE) = - Dvg—g

Let us also define operators relating of lowering and raising indices (no metric)

9\’
(Ayél}(@)(l?’:z:)ﬂ:A-3 (B—) — B dx® d°x
o0x ox



Motivating the answer

Arbitrary Geometric
Quantity kK

Density pd"x l
(n-form)

dp

i —div (pu)
dp ok _ 4
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Simulation of Geometric Order Parameter (GOP)
equation for orientation
H*p(t=0) H*o(t=0)

2D simulation

Initial conditions are
given by an isolated
patch with random
orientation

H*p(t=0.1)




Theorem [Energy dissipation]: Energy L is evolving according to

G = (e 5 (e 50))

Theorem [Existence of singular solutions-necessary conditions]: The weak
form of the GOP equation contains only values and first derivatives of the arbitrary
function so singular solutions may exist

<%> 6) = (= Lyogeyn, 0) = (w06, (no fs_f)ﬁ> = (%) £Goge9)

Theorem [Collapse of singular solutions]: There exist initial conditions for scalar
equation for which singular solutions collapse (ngerge) in finite time

15/
Simulation of two singular solutions

with opposite amplitudes collapsing
in finite time.
(Solid -theory, dashed-simulation) 5l




Metric formulation

For an arbitrary functional F,

dF|k] 0k O0F\ OF
dt _<8t’ 5/-;> B <_£<“[ﬂ]°‘f§5>w’ﬂ>

= (o 5): (ko 50 ) ) = (B FRIM

defines Metric Tensor for any two functionals F and E
and (as we see below) Double Bracket (bracket of a bracket)

Double Bracket comes from Darcy’s law (force proportional
to velocity) so it is a way to introduce dissipation in a
physical system - Lie-Darcy’s dissipation

Advantages:

|) Preserves coadjoint motion (modifying velocity) if added
to inertia in the Euler-Poincare form

2) Allows singular solutions if mobility is nonlocal function



Connection to previous work
Double Bracket dissipation introduced before:

Bloch, Brockett, Ratiu, Comm. Math. Phys, 147,57-74 (1992)
Bloch, Krishnaprasad, Marsden, Ratiu, Comm. Math. Phys, 1735,
1-42 (1996);

Bloch, Brockett and Crouch, Comm. Math. Phys, 187, 357
373 (1996)

Motivation: Dissipation in Euler equations and list sorting
Brockett, Linear Algebra and Applications, 122,76 1-777 (1989)

Vallis, Carnevale and Young, J. Fluid Mech, 207, 133-152 (1989,

Why not apply double bracket ideas to kinetic
equations as a dissipation model?



Motivation: Mass-spectrometer using Atomic Force Microscope

Oscillating AFM tip creates particle dynamics me T
L . . o0,
Possibility of separating particles (molecules) based

on dynamical properties- Important to know dissipation He
With Takashi Hikihara (Kyoto University, Engineering) ..<

Mathematically:
Introducing dissipation into Vlasov’s equation for f(p,q,t)

(D.D.Holm,V.Putkaradze and C.Tronci, C.R.Acad.Sci Paris, to appear (2007))
For any two functionals E and F define ({, } is the Lie-Poisson bracket

o= {{on {5 (o 1) )

Then for arbitrary functional F dF
=uk, Fh

dissipative dynamics is dt

A. Kaufman, Phys Lett A, 100, 419-422 (1984), P. Morrisson, Phys Lett A,
100, 419-422 (1984) - general double bracket form
H. Kandrup, Astrophys. |. 380 511-514 (1991); ulf] = af



Dissipative Vlasov equation for particles with orientation

Suppose g is the space dual to the Lie algebra so(3) (or more general)
Define a bracket as in Gibbons, Holm and Kuppershmidt,

Phys. Lett A, 90, 281-283 (1982); N 9f Oh
ibid, Phys. D, 6, 179-194 (1982/3). {ohf, = {f’h}+< [a 0g]>

Taking moments & applying cold plasma closure yields chromohydrodynamics

. . . I I af 5E
The dissipative Vlasov equation is It {f’ { m’ of }1 }1

Equations of motion: p = /fdgdp G = /gfdgdp
Moments - Define

fp = /u[f]dgdp png = /gu[f]dgdp

Assume linearity in g; Integrate with respect top and g
Neglect all moments involving product pg
Truncate terms with moments (in p) higher than one

We obtain, at zeroth order -
dp 0 R 0 oF
ot og\""P a5,



Evolution equations for density and orientation

9p _ Very cute
ot

oo +

ot &'

Diffusion Lie-Darcy

Example: rod-like particles on a line - so(3) algebra
G=m(z), and adiw=-vxw SO

o _ O ( 00E d OF
ot  Ox P oz dp Hm* 5 5m
om 0 0 6F 0 OF
T (“”am +“m'ax5m) i
Gilbert dissipation for
Landau-Lifschitz equation



Connection to Smoluchowski’s equation

Do not integrate with respectto g A,(q,9) ::/p” flq,p,9)dp.
(only moments in p)

AQ
Use cold plasma approximation Ag = N
0
0Ag 0 0 o . 0
Z0 = (A A A =
5 361( 07:01> By ( 05y (g Ao) L 3y gfm)
0A1 0 O\ 0 0 d . At 0
o aq(Alfm) A0y T Mg T oy (Al 5 L9M) " 4, b (gf‘”))

Our variables g are on Lie Algebra - not Lie group (2-sphere)
Compare with e.g. P. Constantin, Comm. Math. Sci, 3, 531-544 (2005)

oA
8—; — 8, [0, 40 — Aod, (G * Ap)]

Certain similarities are apparent but our tensors § are antisymmetric, so
equations look different



Summary

| )We derived new equations for self-organizations of oriented particles
from general conservation principles
2) We suggested a dissipative Vlasov equation with the dissipation preserving
weak solutions
3) We derived a new dissipative equations for momenta - Lie-Darcy dissipation
4) We suggested a kinetic origin of Gilbert dissipation in Landau-Lifshitz
equations

Future work

|) Study the appearance and dynamics of the generalized solutions to the new
dissipative kinetic equations

2) Study singular solutions in the new Lie-Darcy dissipative equations

3) Applications to self-organization and protein dynamics



