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Three Parts

1. Vlasov Equation — Grand Unified 241 Media Theory

Plasma Physics, Vortex Dynamics, Stellar Dyns., ...

2. Canonization and Diagonalization of Continuous Spectrum

Normal Modes of Infinite Hamiltonian System

3. Statistical Mechanics with Continuous Spectrum

Partition Function Calculation



Part One

V0Iasov Equation — Grand Unified 241 Media Theory




Viasov-Poisson System

Phase space density ((1 + 1) + 1 field theory):
f:II xRxIR— IR, f(xz,v,t) >0

Conservation of phase space density:
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Poisson’s equation:
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Energy:
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Grand Unified 241 Media Theory (1-field)

Phase space density of something :

(:ZxIR— IR, z = (q,p) € Z = symplectic manifold

Conservation of phase space density:
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o TEd=0 [f, 9] := 0qfOpg — OpfOyg

Constraint/elliptic equation:
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8=E:hl(z)—I—/ZhQ(z,z)C(z)sz + ..

Energy:
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Particles and Forces

two particle interactions
attractive: 1l e — — o 2

repulsive: — o1 20 —

e Vortex-Vortex (e.g. fluid mechanics)

e Electrostatic (e.g. plasma physics)

e Potential Vorticity (e.g. fluid mechanics)
e Newtonian gravity (e.g. stellar dynamics)
e Vorticity Defects (e.g. fluid mechanics)

many particles & long range interaction —
phase space density f governed by Viasov dynamics

f(x,v,t) dedv = number of particles in dedv at (z,v)



Noncanonical Hamiltonian Structure

Hamiltonian structure of media in Eulerian variables

Kinematic Commonality:

energy, momentum, Casimir conservation; dynamics is
measure preserving rearrangement; continuous spectra;

. T

Noncanonical Poisson Bracket:
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Cosymplectic Operator:

7= o0Co - _8-8C
o Oq Op Oq Op

dqdp

Equation of Motion:

oC _ _ oH _

Organizing principle. Do one do all!




Stable Equilibria (generalized Rayleigh)
Vlasov:
Thermal  fo = ce~mv*/2kpT:
Dynamical  fo(v;T7,75...) g"

Stable  f} <O0.

Euler: o

. _ ) Y
Dynamical  U(y;ai,a0...) = [ Us)

Stable Shear Flow  U" # 0 KIRNSNNOSAN



Linear Vlasov-Poisson System

Linearize:
f=folv) +d0f(z,v,t)
Linear EOM:
00 f 0o f e 0090 fo
_4 — 0
Ot +U8x +m(9:1: ov

ddrr = 4Te /]R df(x,v,t)dv

Linearized Energy (Kruskal-Oberman):
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Eigenvalue Problem and Continuous Spectrum

Assuming §f = f(v)ewt—kT and §¢ = pe'@t—kT the LVP becomes

iwf —ikvf —ikdlx; f1fo(v) =0

<— the eigenvalue problem

LF=wf  where (LF) () = v F(v) — fH(v) /]Rdu Fuw)

where L : B — B, Banach space B (e.g. L2), L not self-adjoint.

The set of eigenvalues, spec L = op U ocU or, Where
e point: w € oy, if L—wZ is not one-one, Z = identity operator.

e residual: w € o, iIf the range of L — wZ is not dense in B.

e continuous: w € o, If the inverse of L — wZ, defined on its
range, is unbounded. Can prove spec L = oe.




Linear Hamiltonian Theory

Poisson Bracket:

OF OG
{F7G}L:/f0 [55],3755]0] drdv ,

with Hamiltonian as Kruskal-Oberman energy, Hy, gives the LVP
system in the following form:

88 f

EZ{CSJC,HL}L,

with variables noncanonical and Hjy not diagonal.




Fourier Linear Theory

Assume

5f =Y fr(v,t)e®, 5p =3 ¢y (t)elh®
k k

Linearized EOM:

3fk e dfo

+ikvfi+ ik S0 =0, ko= —ame [ fi(v,t)dv

T hree methods:

1. Laplace Transforms (Landau and others 1946)
2. Normal Modes (Van Kampen, ... 1955)

3. Coordinate Change <= Integral Transform (PJM, Pfirsch,
Shadwick, Balmforth 1992)



Part One Summary

A large class of systems GU24+1MT have common Hamiltonian
structure with equilibria with common linear theory that has a
continuous spectrum.



Part Two

Canonization and Diagonalization of Continuous Spectrum




Canonization & Diagonalization

Fourier Linear Poisson Bracket:
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Linear Hamiltonian:
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Canonization:

Qk(v7t) — fk(vvt) ) pk(vat) —

kfo k(?) t) =



Integral Transform

Definintion:

f(w) =Glgl(v) = er(v) g(v) + €1(v) Hg](v),

where

w2 A fo(v)
_ p 9JO\V
EI(U) — _71-]{'2 o

er(v) =1+ Hlef](v),

and the Hilbert transform

Hg(v) = [ 9

wJIR u—7v

du ,

with P denoting Cauchy principal value.

In general Hilbert-like transforms diagonalize continuous spec-
trum in large class of systems (cf. quantum mechanics, Simon).



Transform Properties

Theorem (G1) G: LP(IR) — LP(IR), 1 < p < oo, is a bounded
linear operator; i.e.

1G1glllp < Bpllgllp

where By, depends only on p.

Theorem (G2) If fj € L1(IR), stable, Hdlder decay, then G[g]
has a bounded inverse,

G LP(R) — LP(R),
forl1/p+1/q <1, given by

g(u) = G [f1(w)

where |e|? := e% 4 e%



Transform Identities

Lemma (G3) Ife; and ep are as above, then

(i) for f,vf € LP(IR),
G wfl(w) = uG fl(u) — L [k fdv,

e[2m

(i) G Herl(u) =

er(u)
2(

2 (u)

(iii) and if f(u,t) and g(v,t) are strongly differentiable in t; i.e.
the mapping t — f(t) = f(t,-) € LP(IR) is differentiable with
the usual difference quotient converging in the LP sense, then

178 oG o
a) ¢ 1[8_{]: az[sf]:a?r

dg] — 9¢lgl _ 0
o) 6 [5] =5 =t



Integral Transformation Solution of LVP
Theorem (S1) For initial conditions and equilibria as above,

fr(v,t) = G |G [fleHhv]

is a solution of (LVP) in the strong LP sense [cf. Lemma (G3)].

This solution is arises naturally in the Hamiltonian context. Be-
low it is written in terms of a mixed variable generation func-

tional.



Diagonalization

Mixed Variable Generating Functional:

FlaP1= 3 [ () GIAI) de

Canonical Coordinate changes (q,p) «+— (Q’, P"):

0F|q, P'] 0F[q, P']
0qi.(v) 6 P, (u)

pr(v) = = G[Pg](v), Qp(u) = = G [qx] (u)

New Hamiltonian:

_ — . / / _ — 2 2
o= Y | iwn(w) Qh(w) Pi(u) du = Py [ wn) (QR+PD)/2du

where wi(u) = ku and (Q', P") «—— (Q, P) is trivial.



Part Two Summary

A large class of noncanonical Hamiltonian systems GU24+1MT
with continuous spectra can be diagonalized just like finite degree-
of-freedom Hamiltonian systems.



Part Three

Statistical Mechanics with Continuous Spectrum




Some History

Statistical Mechanics Applied to Fluids and Plasmas:

L. Onsager (1949), 2D Euler; Burgers (1929), Euler, T.
D. Lee (1952), 3D Euler, MHD; R. H. Kraichnan and
D. Montgomery (1980), Salmon, Robert, Sommeria...
(1990’'s) 2D Euler; D. Lynden-Bell (1967), Vlasov-Jeans;
Turkington, Majda, Jung et al.... present

Statistical Mechanics: finite DoF — infinite DoF thermo limit

Fluid and Plasma PDEs: infinite DoF — 7

Why? Turbulence is ‘far from absolute equilibrium’....

— Can do it?

Attitude — Do calculation and see what comes out!




Plasma Fluctuation History

Statistical mechanics of fluctuations (Van Kampen Modes).

Other Conventional Approaches:

e Klimontovich: smooth by < 6 — functions >.

e Liouville Equation: truncate BBGKY hierarchy.

e Dressed Test Particle: W.B. Thompson, Rostoker, .. ..

e N-Body Stat Mech: partition function calculation.



Partition Function for Solid

Einstein (1907), Debye, ...

Lattice vibrations of 3N SHO's

Z = Z e Pl
r=0

- 1
6 T kBTb

E, = quantized energy levels

Dulong-Petit: classical limit =— Cy, = 3Nkp

= —935" = 3¥,—0 Ere PP kpTy/ DOF



Classical Systems

N
Z = /e_ﬁE Hindpi
1

Requirements: e Energy e\Volume Measure
Hamiltonian Dynamics: o = H(q,p) e Liouville's Thm

Diagonalization Procedure: H = %pMp + qGp + %qVq

N N
(:p) «— (Q,P) == H =3} wi(Q7 + P?)/2=> QP

Equipartition: SkpTy/( )2



Field Theory — Functional Integral

=z :/ e—PBHlq.p] DqDp

Fields: q(z,t) and p(z,t)

Evaluate by discretization: (q,p) — (q;,p;) and [dz — 3,

We do it for Gaussian integrals for which 3 rigor .

(e.g. R. Feynman — C. Dewitt-Morette)



Functional Integral

Z =/ e~ BHLlg.p] Dqu:/ e_ﬁZkI%(Q%_I_PkQ) du HDQkDPk
k

Gaussian Functional Integral: u — u;, Q) < E and (ExEf) =

Units: Volume, V, cf. &p = —% a(WER),EMQ

Comparison: For Maxwellian agrees with Thompson-Rostoker
result, otherwise new. Note: T, need not equal T}.




Equipartition

In previous work it is noted that (EE7) approaches kgT'/2 in
the limit kAp << 1, which suggests a failure of the equipar-
tition theorem when this limit is not taken.

E; not canonical variable == 3 equipartition.

Equipartition = kgT'/2 for each quadratic term in diagonal
Hamiltonian.

Present context equipartition V k£ <—
kp'T

<Qk(u)Qk’(u,)> = W 5k,k’ 5(’11, — u’) i

Hamiltonian formulation makes this clear.



Fluctuation Spectra

Map Back:

Er(u) — fr(v)

Calculational Identities —

<fk(v)f;,(v’)>

=) —
k! m2e2V 3| w 7 |e(0)|? v’

k2 {61(?))5@ ) 1 er(0) GI(U')EI(’U)}

New Formula (Klimontovich had Maxwellian case.)




Summary

1. VlIasov Equation

Plasma Physics, Vortex Dynamics, Stellar dyns. ...

2. Diagonalization of Continuous Spectrum

Normal Modes of Infinite Hamiltonian System

3. Statistical Mechanics with Continuous Spectrum

Partition Function Calculation reproduced and generalized
old results. — Have done calculations for shear flow —
can do them for all GU24+1MT's!



Comparison and Comments

N-particle statistical mechanics with Coulomb interaction:
Full dynamics, approximate Z vs. linear dynamics, exact ~Z.
Hamiltonian diagonalization — static form factor.

Liouville, Klimontovich, dressed test particle: Same < FE >
expression only. Klimontovich < ff > but Maxwellian only.

Vlasov vs. Klimontovich: VIasov smooth, Klim. not. Same
eq. different i.c.. Sum over states? Landau incomplete.

Bath temperature vs equilibrium temp: T, = 1/(kgB) a Z
property; Te is equlibrium (steady state) property.

Thompson and Rostoker nonequilibrium < EFE >'s: No cal-
culation, expansion in charge; dimensionless parameter = 7

Method of general utility: fluid shear flow, rossby-drift waves;
etc. Noncanonical Poisson brackets. Organizing principle.



Shear Flow Fluctuation Spectra

Euler/QG:

(wr(Wwi (W) = 6g g {f (W)o(y — ') + g1y, y’)}

where f,g are determined by the equilibrium velocity profile.

Nontrivial calculation is in S. Jung Ph.D. thesis.
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Vorticity k-Spectrum
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Properties of Vlasov Systems

most important equation in plasma physics
nonlinear pde

hyperbolic

elliptic

characteristics — nonlinear ode

Hamiltonian system (symplectic geometry)

—= rich and challenging area of study



Global Existence and Uniqueness
R. Kurth (1952) and J. Batt (1963,1977)

Theorem (local) Every initial datum f € CL(R®), f > O,
launches a unique classical solution f on some time interval [0,T]
with f(0) = ;" For all t € [0, T[ the function f(t) is compactly
supported and non-negative. If T' > 0 is chosen maximal and if

sup {|v| | (z,v) € supp f(t), 0<t< T} < o0
or
SUD{p(t,x) 10<t< T, x€ ]R3} < 00,

then the solution is global, i.e., T' = .
K. Pfaffelmoser, P.-L. Lions and B. Perthame (1989)

Theorem (global) Any non-negative initial datum }e CL(IR®)
launches a global classical solution of the VIasov-Poisson system.



