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Goals of the Lecture
Explain a little about classical field theories, multisymplectic 
geometry, multimomentum maps, etc.

Discuss the corresponding discrete theory and associated 
variational integrators that lead to things like AVIs 
(Asynchronous Variational Integrators) for field theories such as 
nonlinear elasticity and electromagnetism.

Define SEM (Stress-Energy-Momentum) tensors using 
multimomentum maps --- that is in terms of the flux of momentum 
and energy across surfaces.

Introduce the Kuchar trick to make any field theory 
diffeomorphism invariant

Establish the Hilbert-Belinfante-Rosenfeld formula:



Some Classical Field Theory

Fields, jet bundles, dual jet bundles

Multisymplectic forms

Multimomentum maps

Euler--Lagrange equations

Field theoretic analog of “Flow is symplectic’’



Fields
! πXY : Y → X a covariant configuration bundle. Co-

ordinates on X are xµ, µ = 0, 1, . . . , n (and so dim X =
n + 1) and coordinates on Y denoted yA.

!Fields are sections φ : X → Y .

! Each such field determines a section j1φ of the first jet
bundle J1Y → X , an affine bundle; in coordinates,
j1φ is given by

xµ "→
(
xµ, φA(xµ) , ∂νφ

A(xµ)
)
.

! Electromagnetism: X is spacetime and Y is the
bundle of one-forms. Sections A : X → Y are electro-
magnetic potentials.
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Dual Jet Bundle
! Field-theoretic analogue of the cotangent bundle.

!Dual jet bundle J1Y ! is the vector bundle over Y
whose fiber at y ∈ Yx is the set of affine maps from
J1

yY to Λn+1
x X , where Λn+1X denotes the bundle of

(n + 1)-forms on X .

! Coordinates on J1Y ! are (xµ, p, pA
µ), which correspond

to the affine map given in coordinates by

vA
µ "→

(
p + pA

µvA
µ

)
dn+1x

where
dn+1x = dx0 ∧ dx1 ∧ · · · ∧ dxn.
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Canonical Forms
! Analogous to the canonical one- and two-forms on a

cotangent bundle, there are canonical forms on J1Y !.

! An n + 1 form Θ and an n + 2 form Ω:

Θ = pA
µdyA ∧ dnxµ + p dn+1x,

and

Ω = −dΘ = dyA ∧ dpA
µ ∧ dnxµ − dp ∧ dn+1x.
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Lagrangian
! Lagrangian density:

L : J1Y → Λn+1X,

In coordinates, write

L = L
(
xµ, yA, vA

µ

)
dn+1x.

!Covariant Legendre transformation : a map

FL : J1Y → J1Y !

pA
µ =

∂L

∂vA
µ
, p = L− ∂L

∂vA
µ
vA

µ

! Note that the multimomenta pA
µ are “conjugate” to

the space as well as the time derivatives.
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Euler–Lagrange Equations
! Variational principle:

δ

∫
L(j1φ) = 0

! Equivalent to the Euler–Lagrange equations:

∂L

∂yA
(j1φ)− ∂

∂xµ

(
∂L

∂vA
µ
(j1φ)

)
= 0

! Analog of symplecticity in Lag/Ham mechanics:
Multisymplecticity : a consequence of the varia-
tional principle. The integral of the contraction of
Ω with two first variation solutions of EL over the
boundary of a spacetime region is zero.
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 People: Patrick, Shkoller, JM



Discrete version of this theory

Leads to a field-theoretic version of variational integrators

Integrators are similar to spacetime finite element methods

Multisymplectic, good energy behavior

Lead to AVI methods

Applied to nonlinear wave equations (sine-Gordon), nonlinear 
elasticity, etc.



Based on discrete versions of the variational principles of mechanics. 

Respects the structure of mechanics (symplectic, energy, momentum). 

Gets the energy budget right even for forced or dissipative systems
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 People: Kane, West, Ortiz and JM

Variational Integrators



In addition, these algorithms get the statistics right—in the sense of uncertainty 
propagation in time (and, eventually in space, through a network). No theorem 
yet, but it is surely related to symplecticity.
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 People: Lew, West, Ortiz and JM

Statistical Properties



Variational 
integrators 
compute chaotic 
invariant sets 
much more 
robustly than 
even higher 
order accurate 
algorithms.

 People: Bou-Rabee and JM
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Excellent energy behavior, even 
after millions of temporal updates.

Can take different time steps with 
different elements in the mesh.  People: Lew, West, Ortiz, Cirac and JM

AVI:  AsynchronousVariational Integrators



 People: Scheeres, Leok et al

State of the Art



Electromagnetism
! For electromagnetism on a fixed background spacetime

X with metric g, the Lagrangian density is

L = −1

4
FµνF

µν√−g d4x, F = dA.

! Legendre transformation

Fµν = Fµν√−g and p =
1

4
FµνF

µν√−g.

! Cartan form ΘL

ΘL =
√
−gF νµdAν ∧ d3xµ +

1

4
FµνF

µν√−g d4x

! The 5-form ΩL = −dΘL

! Euler–Lagrange equations: dF = 0, δF = 0 (same as
Maxwell).
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Symmetry
! Symmetry groups G, automorphism group of Y .

! Can cover diffeomorphisms on the base X

! Lift to dual of the jet bundle using the analog of cotan-
gent lift

! Associated multimomentum map

J : J1Y ∗ → g∗ ⊗ ΛnJ1Y ∗ = L(g, ΛnJ1Y ∗)

given in coordinates by

〈J, ξ〉 = (pA
µξA + p ξµ) dnxµ − pA

µξνdyA ∧ dn−1xµν,

! If the Lagrangian is covariant then there is an asso-
ciated Noether theorem giving a conservation identity
for J .

3



What about symmetry?
Examples like electromagnetism have a symmetry

Gravity too, but...

Associated conservation laws, such as div E = 0.

For discrete integrators to respect that, need the discrete 
action to have the same symmetry

Symmetry in E and M is of course the usual gauge symmetry: 
A —> A + df

For E and M, this problem is cured using DEC (Discrete 
Exterior Calculus)



Rectangular spatial mesh Unstructured spatial mesh

 AVIs, DEC and Computational Electromagnetism

AVI methods generalize the
Yee/ Bossavit/ Kettunen 
scheme and allow for 

asynchronous time stepping 
(yet obey the geometry)

Still multisymplectic and with 
good respect for the mechanics

 People: Stern, Desbrun, Tong and JM



Discrete Mechanics Break

Discrete mechanics is great for doing optimal control 
problems in addition of doing time stepping in field theories.

We give a few examples of DMOC (Discrete Mechanics and 
Optimal Control) in action to wet your appetite



DMOC—Discrete Mechanics and Optimal Control

 Many problems can be parallelized
 Applies to many sorts of problems, such as 

optimal walking and other robotic problems

Same variational discretization methods as time 
stepping. Flexibility of variational methods enable 
hierarchical and parallelizable methodologies  

 People: Ober-Bloebaum, Junge, Kobilarov and JM 



Falling Cats, Optimal Swimming

 People: Kanso, Martin, Ober-Bloebaum, Leyendecker and JM



Optimal Walking and Spacecraft Reorientation
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 People: Ober-Bloebaum, Leyendecker, Ortiz, Pekarek and JM 



SEM Tensor
! Theorem. (Gotay and JM, 1992). Consider a G-

covariant Lagrangian field theory and suppose G covers
Diff(X). For each section φ : X → Y there exists a
unique (1, 1)-tensor density T(φ) on X such that∫

Σ
i∗Σ(j1φ)∗JL(ξY ) =

∫

Σ
Tµ

ν(φ)ξνdnxµ

for all ξ ∈ Xc(X) and all hypersurfaces Σ, where iΣ :
Σ → X is the inclusion.

! This defines the SEM tensor in terms of fluxes of the
multimomentum map. In coordinates T is given by the
“canonical stress energy tensor” one finds in the books
plus correction terms (Belinfante-Rosenfeld formula).
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Major Glitch and a Cure
! If a field theory is coupled to gravity, then the symme-

try assumption will hold.

! But what if the spacetime metric is a background, as
in electromagnetism?

! Use the Karel Kuchar trick: suppressing the jet de-
pendence, write L(φ,G) for the given Lagrangian, de-
pending on a metric G on X . Assume there is another
metric g on another copy X̃ of X .

! Introduce a new field and a new Lagrangian:

L̃(φ, η) = L(φ, η∗g)

for the new Lagrangian, where η : X → X̃ . This will
cure the ills.
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Covariant Lagrangian
! Assume that the given Lagrangian L has the eminently

reasonable covariance property for a diffeomorphism
ψ : X → X :

ψ∗ (L(φ,G)) = L(ψ∗φ, ψ∗G)

where, as earlier, we assume that there is a natural way
to lift the diffeomorphism action to Y .

! The new Lagrangian is covariant and so will have a mo-
mentum map and we use the above theorem to define
the SEM tensor.

! But we seem to have introduced another disease! What
are the Euler–Lagrange equations for the new field?
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The Cure
!Three wonderful things now happen

! First, using the techniques in the 1992 Gotay and JM
paper, we get the “Hilbert formula”:

! Tµν = 2 ∂L
∂Gµν

! Denoting the momentum conjugate to the derivatives
ηa

,µ by pa
µ, we get a version of the Piola-Kirchhoff SEM

tensor in nonlinear elasticity:

ρa
µ = Tµνηb

,νgab

! Finally, the Euler–Lagrange equations for the extra
field show that the divergence of the stress energy mo-
mentum tensor is zero!
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The SEM part was done with these two guys

Mark Gotay Marco Castrillon-Lopez

Our paper on these things is our birthday gift to you, Darryl


