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. Goals of the Lecture

[ Explain a little about classical field theories, multisymplectic
geometry, multimomentum maps, etc.

[ Discuss the corresponding discrete theory and associated
variational integrators that lead to things like AVls
(Asynchronous Variational Integrators) for field theories such as
nonlinear elasticity and electromagnetism.

[ Define SEM (Stress-Energy-Momentum) tensors using
multimomentum maps --- that is in terms of the flux of momentum
and energy across surfaces.

[ Introduce the Kuchar trick to make any field theory
diffeomorphism invariant

[A Establish the Hilbert-Belinfante-Rosenfeld formula:
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S Classical Field T

[ Fields, jet bundles, dual jet bundles

4 Multisymplectic forms
4 Multimomentum maps
[ Euler--Lagrange equations

[ Field theoretic analog of “Flow is symplectic”’




mxy Y — X a covariant configuration bundle. Co-
ordinateson X are x*, ;p = 0,1,...,n (and so dim X =
n + 1) and coordinates on Y denoted y*.

are sections ¢ : X — Y.

Each such field determines a section j'¢ of the first jet
bundle J'Y — X. an affine bundle; in coordinates,

7t is given by
ot s (2, ("), 0,84 (o))
. X 18 spacetime and Y is the

bundle of one-forms. Sections A : X — Y are electro-
magnetic potentials.




Dual Jet Bundle

Field-theoretic analogue of the cotangent bundle.

JYY™* is the vector bundle over Y
whose fiber at y € Y, is the set of affine maps from
J,Y to AJ™ X, where A"*'X denotes the bundle of
(n + 1)-forms on X.

Coordinates on J'Y™* are (z#, p, p4*), which correspond
to the affine map given in coordinates by

vl = (p+pafot,) e

where
A"y =di" Adat A - A dz




Canonical Forms

Analogous to the canonical one- and two-forms on a
cotangent bundle, there are canonical forms on J'Y™*

An n+ 1 form © and an n + 2 form (2:
O = psldy* Nd"z, +pda,
and
()= —dO = dy* Adps" ANd"x, —dp N d" "z




Lagrangian

Lagrangian density:
L:JY — A"X,
In coordinates, write
L =1L (:U“, y ?}Au) d" .

FL:J'Y — J'Y*
OL OL
T p=L-—24 v’
ov4, ov4,
Note that the multimomenta p4* are “conjugate” to
the space as well as the time derivatives.

pal' =




Euler—Lagrange Equations

Variational principle:
5 [ 260y~

Equivalent to the Euler-Lagrange equations:

oL , . o ( oL ,
5i0'0) — o5 Goti'e) ) =0

Analog of symplecticity in Lag/Ham mechanics:

. a consequence of the varia-
tional principle. The wntegral of the contraction of
() with two first variation solutions of EL over the
boundary of a spacetime region 1S zero.

$& People: Patrick, Shkoller, JM




[ Leads to a field-theoretic version of variational integrators
[ Integrators are similar to spacetime finite element methods

™ Multisymplectic, good energy behavior

™ Lead to AVI methods

™ Applied to nonlinear wave equations (sine-Gordon), nonlinear
elasticity, etc.




Variational |

[A Based on discrete versions of the variational principles of mechanics.
A Respects the structure of mechanics (symplectic, energy, momentum).

A Gets the energy budget right even for forced or dissipative systems
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In addition, these algorithms get the statistics right—in the sense of uncertainty
propagation in time (and, eventually in space, through a network). No theorem

yet, but it is surely related to symplecticity.
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Variational
integrators
compute chaotic
invariant sets
much more
robustly than
even higher
order accurate
algorithms.
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Figure 6.2: Poincaré sections vs. Time-Step. From top Poincare sections computed using

RE4, CAY, TLM, and FIV. From left the time-step used = h = 0.0125, 0,025, 0,05 and the tume-

interval of integration is [0, 10°]. These Poincard ssctions are for a underwater vehicle with the

followmg values of the mtegrals of motion IT-p =0, p-p = 527 and H = 4.0. The section =

obtained by ploting points [, [T for which p. = 0. BK4 15 the only method that does not pedorm -}))K(s People: Bou-Rabee and JM
well in this expenment.
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Excellent energy behavior, even 200 . . . . . . . . .

after millions of temporal updates. 0O 10 20 30 40 50 60 70 80 90 100
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Can take different time steps with
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different elements in the mesh. 2 People: Lew, West, Ortiz, Cirac and JM




State of the Art
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Electromagnetism

For electromagnetism on a fixed background spacetime

X with metric g, the Lagrangian density is

1 vV
L= —Ful"/=g d'z, F=dA.

Legendre transtormation

1

S = 1Y /_g and D= ZFWFW /7—9.

Cartan form O,
1
Or =/—gF""dA, N dgxu + ZF/WFW\/_Q d*x
The 5-form )y = —dO,

FEuler-Lagrange equations: dF' = 0, 6 F = 0 (same as
Maxwell ).




Symmetry groups ¢, automorphism group of Y.
Can cover diffeomorphisms on the base X

Lift to dual of the jet bundle using the analog of cotan-
oent lift

Associated multimomentum map

J:JY* - g @ A"JY* = L(g, \"J'Y™)
oiven in coordinates by
<J7 €> — (pAugA - pfﬂ) dnx,u — pAugydyA A dn_lxuw

If the Lagrangian is covariant then there is an asso-
ciated Noether theorem giving a conservation identity

tor J.




5 !xamp‘es ilEe e‘ectromagnetlsm Eave a symmetry

[ Gravity too, but...
[/ Associated conservation laws, such as div E = 0.

[ For discrete integrators to respect that, need the discrete
action to have the same symmetry

4 Symmetry in E and M is of course the usual gauge symmetry:
A —>A+df

[A For E and M, this problem is cured using DEC (Discrete
Exterior Calculus)




AVls, DEC and Computational Electromagnetism

Rectangular spatial mesh Unstructured spatial mesh

AV| methods generalize the
Yee/ Bossavit/ Kettunen
scheme and allow for
asynchronous time stepping
(yet obey the geometry)
Still multisymplectic and with
good respect for the mechanics

e
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Di Mechanics Breal

[ Discrete mechanics is great for doing optimal control
problems in addition of doing time stepping in field theories.

4 We give a few examples of DMOC (Discrete Mechanics and
Optimal Control) in action to wet your appetite




DMOC—Discrete Mechanics and Optimal Control

[ Same variational discretization methods as time
stepping. Flexibility of variational methods enable

hierarchical and parallelizable methodologies

[ Many problems can be parallelized
[ Applies to many sorts of problems, such as
optimal walking and other robotic problems

A
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Falling Cats, Optimal Swimming
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Optimal Walking and Spacecraft Reorientation
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SEM Tensor

(Gotay and JM, 1992). Consider a G-
covariant Lagrangian field theory and suppose G covers
Diff(X). For each section ¢ : X — Y there exists a

unique (1, 1)-tensor density €(¢) on X such that

[ attor st = [ T,

)
for all £ € X.(X) and all hypersurfaces ¥, where iy :

> — X 1s the inclusion.

This defines the SEM tensor in terms of fluxes of the
multimomentum map. In coordinates 7' is given by the
“canonical stress energy tensor” one finds in the books
plus correction terms (Belinfante-Rosenfeld formula).




Major Glitch and a Cure

If a field theory is coupled to gravity, then the symme-
try assumption will hold.

But what if the spacetime metric is a background, as
in electromagnetism?

Use the Karel Kuchar trick: suppressing the jet de-

pendence, write L(¢, G) for the given Lagrangian, de-
pending on a metric G on X. Assume there is another

metric g on another copy X of X.

Introduce a new field and a new Lagrangian:

Lp,n) = Lbn'g)
for the new Lagrangian, where n : X — X. This will

cure the ills.




Covariant Lagrangian

Assume that the given Lagrangian £ has the eminently
reasonable covariance property for a diffeomorphism

Y X — X
W (L, G)) = LV ¢, V" G)

where, as earlier, we assume that there is a natural way
to lift the diffeomorphism action to Y.

The new Lagrangian is covariant and so will have a mo-
mentum map and we use the above theorem to define

the SEM tensor.

But we seem to have introduced another disease! What
are the Euler—Lagrange equations for the new field?




The Cure

First, using the techniques in the 1992 Gotay and JM
paper, we get the “Hilbert formula”:

uv __ o 0L
T =20k

Denoting the momentum conjugate to the derivatives
n® . by p,', we get a version of the Piola-Kirchhoft SEM
tensor in nonlinear elasticity:

,Oa“ > T/Wnb,ugab

Finally, the Euler-Lagrange equations for the extra
field show that the divergence of the stress energy mo-
mentum tensor is zero!
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