
EPDiff and Optimal
Control of Shapes

Colin Cotter, Department of Aeronautics,
Imperial College London

1

Talk Outline

2

Talk Outline

✦ How does EPDiff arise in the analysis of
shape? A Darryl-eyed view

2

Talk Outline

✦ How does EPDiff arise in the analysis of
shape? A Darryl-eyed view

✦ Particle-mesh discretisation

2

Talk Outline

✦ How does EPDiff arise in the analysis of
shape? A Darryl-eyed view

✦ Particle-mesh discretisation

✦ Numerical examples

2

EP equation and
optimal control

3

Example: control of rigid body

4

Example: control of rigid body

Q̇ = QΩ with ΩT = −Ω ∈ so(3).

4

Example: control of rigid body

Q̇ = QΩ with ΩT = −Ω ∈ so(3).∫ 1

0

1

2
Ω · IΩ d tMinimise

4

Example: control of rigid body

Q̇ = QΩ with ΩT = −Ω ∈ so(3).

Q(0) = Q0, Q(1) = Q1

∫ 1

0

1

2
Ω · IΩ d tMinimise

4

Example: control of rigid body

Q̇ = QΩ with ΩT = −Ω ∈ so(3).

see Bloch, Crouch, Marsden & Ratiu, 1998

Q(0) = Q0, Q(1) = Q1

∫ 1

0

1

2
Ω · IΩ d tMinimise

4

δ

∫ 1

0

1

2
Ω · IΩ + PT

· (Q̇ − QΩ) d t = 0

5

δ

∫ 1

0

1

2
Ω · IΩ + PT

· (Q̇ − QΩ) d t = 0

IΩ = QT P,

Q̇ = QΩ,

Ṗ = PΩ.

5

δ

∫ 1

0

1

2
Ω · IΩ + PT

· (Q̇ − QΩ) d t = 0

IΩ = QT P,

Q̇ = QΩ,

Ṗ = PΩ.

d

dt
IΩ = Q̇T P + QT Ṗ ,

= (QΩ)T P + QT PΩ,

= ΩT (QT P) + (QT P)Ω,
= ΩT (IΩ) + (IΩ)Ω.

5

When in general can P
and Q be eliminated
from the dynamical

equations?

6

ξ ∈ V Q̇ = LξQQ ∈ M

7

δ

∫ 1

0

"(ξ) + 〈P, Q̇ − LξQ〉d t = 0

ξ ∈ V Q̇ = LξQQ ∈ M

7

δ

∫ 1

0

"(ξ) + 〈P, Q̇ − LξQ〉d t = 0

δ"
δξ

= −P " Q,

Q = LξQ,

Ṗ = − (TQLξ)
T

P,

ξ ∈ V Q̇ = LξQQ ∈ M

7

δ

∫ 1

0

"(ξ) + 〈P, Q̇ − LξQ〉d t = 0

δ"
δξ

= −P " Q,

Q = LξQ,

Ṗ = − (TQLξ)
T

P,

〈P " Q, ξ〉
V

= −〈P ,LξQ〉
T∗M

ξ ∈ V Q̇ = LξQQ ∈ M

7

δ

∫ 1

0

"(ξ) + 〈P, Q̇ − LξQ〉d t = 0

δ"
δξ

= −P " Q,

Q = LξQ,

Ṗ = − (TQLξ)
T

P,

〈P " Q, ξ〉
V

= −〈P ,LξQ〉
T∗M

ξ ∈ V Q̇ = LξQQ ∈ M

Hamiltonian H = !(ξ(P, Q))

7

 Thm: The cotangent variables may be eliminated to
give an equation for only if and only if the velocity map

is a Lie algebra action

(P, Q)

Lξ

ξ

8

 Thm: The cotangent variables may be eliminated to
give an equation for only if and only if the velocity map

is a Lie algebra action

(P, Q)

Lξ

ξ

In that case, the evolution equation obtained is the
Euler-Poincaré equation

8

 Thm: The cotangent variables may be eliminated to
give an equation for only if and only if the velocity map

is a Lie algebra action

(P, Q)

Lξ

ξ

In that case, the evolution equation obtained is the
Euler-Poincaré equation

d

dt

δl

δξ
+ ad

∗

ξ

δl

δξ
= 0

8

 Thm: The cotangent variables may be eliminated to
give an equation for only if and only if the velocity map

is a Lie algebra action

(P, Q)

Lξ

ξ

In that case, the evolution equation obtained is the
Euler-Poincaré equation

d

dt

δl

δξ
+ ad

∗

ξ

δl

δξ
= 0

P ! Qand is a cotangent-lifted momentum map

8

Variational integrators

9

Variational integrators
✦ This allows a method for designing variational

integrators for the EP equation

9

Variational integrators
✦ This allows a method for designing variational

integrators for the EP equation

✦ Simply discretise the variational principle and
derive the equations

9

Variational integrators
✦ This allows a method for designing variational

integrators for the EP equation

✦ Simply discretise the variational principle and
derive the equations

✦ The resulting numerical method can be reduced
to a discrete EP equation provided that the
discretisation is left-invariant

9

Variational integrators
✦ This allows a method for designing variational

integrators for the EP equation

✦ Simply discretise the variational principle and
derive the equations

✦ The resulting numerical method can be reduced
to a discrete EP equation provided that the
discretisation is left-invariant

✦ See: Marsden and Bou-Rabee (2007) and
Cotter and Holm (submitted 2007)

9

Variational image
matching

10

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

✦ Embeddings Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

✦ Embeddings

✦ Functions

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

✦ Embeddings

✦ Functions

✦ Vector fields

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

ξ : Ω !→ TΩ,
∂

∂t
ξ

t
+ (ut · ∇)ξ

t
= (ξ

t
· ∇)ut

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

✦ Embeddings

✦ Functions

✦ Vector fields

✦ ...

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

ξ : Ω !→ TΩ,
∂

∂t
ξ

t
+ (ut · ∇)ξ

t
= (ξ

t
· ∇)ut

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

11

✦ Embeddings

✦ Functions

✦ Vector fields

✦ ...

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

ξ : Ω !→ TΩ,
∂

∂t
ξ

t
+ (ut · ∇)ξ

t
= (ξ

t
· ∇)ut

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

All of these spaces have roles in imaging

11

✦ Embeddings

✦ Functions

✦ Vector fields

✦ ...

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field defined on the domain with
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

ξ : Ω !→ TΩ,
∂

∂t
ξ

t
+ (ut · ∇)ξ

t
= (ξ

t
· ∇)ut

When the control variables are vector fields on a manifold,
they can act on a number of different spaces.

All of these spaces have roles in imaging

For the rest of the talk specialise to embeddings

11

What does the shortest path
between two shapes look like?

12

What does the shortest path
between two shapes look like?

12

What does the shortest path
between two shapes look like?

12

What can we do with these paths?

✦ Length along path measures
amount of deformation from
one shape to another

✦ A way of comparing and
classifying shapes

✦ Deformation from one shape
to another is encoded in
initial conditions for
deformation velocity field,
where we can perform linear
statistics

13

Solve

min

{
∫ 1

0

‖ut‖
2
dt

}

Optimisation problem

14

Solve

min

{
∫ 1

0

‖ut‖
2
dt

}

Optimisation problem

subject to
∂

∂t
Q

t
(s) = ut(Qt

(s)), ∀s ∈ (0, 2π]

14

Solve

min

{
∫ 1

0

‖ut‖
2
dt

}

Optimisation problem

subject to
∂

∂t
Q

t
(s) = ut(Qt

(s)), ∀s ∈ (0, 2π]

and

Q0(s) = QA(s), ∀s ∈ (0, 2π], Q1 ≡ QB

14

Constraints

15

Constraints

✦ Dynamical constraint: shape is moved by the
flow

15

Constraints

✦ Dynamical constraint: shape is moved by the
flow

✦ Matching condition: shapes are “equivalent”
after deformation

15

Constraints

✦ Dynamical constraint: shape is moved by the
flow

✦ Matching condition: shapes are “equivalent”
after deformation

✦ For now, matching condition is a “soft
constraint” enforced via penalty term

15

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

16

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) − ut(Qt(s))

)

ds

)

dt +
1

σ2
f [Q1]

)

16

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

16

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

Euler-Lagrange equations for t<1

16

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

Euler-Lagrange equations for t<1
∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s)))

T P t(s)
mt(x) =

∫
S

P t(s)δ(x − Qt(s)) d s

16

Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

Euler-Lagrange equations for t<1

where

‖ut + εû‖2 = ‖ut‖
2 + ε

∫
Ω

mt · ûdV (x) + O(ε2)

∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s)))

T P t(s)
mt(x) =

∫
S

P t(s)δ(x − Qt(s)) d s

16

Momentum formula

17

Momentum formula
For example: ‖u‖2 =

1

2

∫
Ω

|u|2 + α
2‖∇u‖2dV (x)

17

Momentum formula
For example: ‖u‖2 =

1

2

∫
Ω

|u|2 + α
2‖∇u‖2dV (x)

‖u + εû‖2 = ‖u‖2 + ε

∫
Ω

(1 − α
2∇2)u · ûdV (x) + O(ε2)

17

Momentum formula
For example: ‖u‖2 =

1

2

∫
Ω

|u|2 + α
2‖∇u‖2dV (x)

‖u + εû‖2 = ‖u‖2 + ε

∫
Ω

(1 − α
2∇2)u · ûdV (x) + O(ε2)

m = (1 − α
2
∇

2)uSo

17

Momentum formula
For example: ‖u‖2 =

1

2

∫
Ω

|u|2 + α
2‖∇u‖2dV (x)

‖u + εû‖2 = ‖u‖2 + ε

∫
Ω

(1 − α
2∇2)u · ûdV (x) + O(ε2)

m = (1 − α
2
∇

2)uSo

Equations become
∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s)))

T P t(s)
(1 − α2∇2)ut(x) =

∫
S

P t(s)δ(x − Qt(s)) d s

17

Elimination
For any choice of norm, we can eliminate P and Q to get an

equation purely in terms of u
∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0

18

Elimination
For any choice of norm, we can eliminate P and Q to get an

equation purely in terms of u

This is the equation for geodesics on the diffeomorphism
group with metric , known as EPDiff (Holm and

Marsden, 2004)
‖ut‖

2

∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0

18

Elimination
For any choice of norm, we can eliminate P and Q to get an

equation purely in terms of u

This is the equation for geodesics on the diffeomorphism
group with metric , known as EPDiff (Holm and

Marsden, 2004)
‖ut‖

2

For our example norm, we get the n-dimensional Camassa-
Holm equation (Holm, Marsden and Ratiu, 1998)

∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0

18

Elimination
For any choice of norm, we can eliminate P and Q to get an

equation purely in terms of u

This is the equation for geodesics on the diffeomorphism
group with metric , known as EPDiff (Holm and

Marsden, 2004)
‖ut‖

2

For our example norm, we get the n-dimensional Camassa-
Holm equation (Holm, Marsden and Ratiu, 1998)

In 1-dimension this becomes (Camassa and Holm, 1993)

mt +
∂m

∂x
u + 2

∂u

∂x
m = 0, m = u − α2

∂2u

∂x2

∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0

18

Matching condition
We don’t want to require that specific points on the shapes

get matched to each other (landmark matching)

19

Matching condition
We don’t want to require that specific points on the shapes

get matched to each other (landmark matching)

Density matching condition (Glaunes et al, 2005)

dµ1(x) =

∫
S

µ̂A(s)δ(x − Q1(s)) dsdV (x)

dµA(x) =

∫
S

µ̂A(s)δ(x − QA(s)) dsdV (x)

dµB(x) =

∫
S

µ̂B(s)δ(x − QB(s)) dsdV (x)

19

Matching condition
We don’t want to require that specific points on the shapes

get matched to each other (landmark matching)

Density matching condition (Glaunes et al, 2005)

dµ1(x) =

∫
S

µ̂A(s)δ(x − Q1(s)) dsdV (x)

dµA(x) =

∫
S

µ̂A(s)δ(x − QA(s)) dsdV (x)

dµB(x) =

∫
S

µ̂B(s)δ(x − QB(s)) dsdV (x)

f [Q1] =

∫
Ω

∫
Ω

K(x, y)dν(x)dν(y), dν = dµB − dµ1

Penalty functional is

19

Momentum

✦ Geodesic is determined by initial conditions for
shape coordinates Q and conjugate momenta P

✦ Given a reference shape, have an isomorphism
between any topologically equivalent shape and
initial conditions for P

✦ P is in a linear space so we can apply linear
statistical techniques to this representation

20

Relabelling symmetry

21

Relabelling symmetry

✦ As noted by Holm and Marsden (2004) in the
context of the n-dimensional CH equation, the
Lagrangian is invariant to reparameterisations
of the curve

21

Relabelling symmetry

✦ As noted by Holm and Marsden (2004) in the
context of the n-dimensional CH equation, the
Lagrangian is invariant to reparameterisations
of the curve

✦ Corresponding conserved momenta is

21

Relabelling symmetry

✦ As noted by Holm and Marsden (2004) in the
context of the n-dimensional CH equation, the
Lagrangian is invariant to reparameterisations
of the curve

✦ Corresponding conserved momenta is

P · dQ

21

Relabelling symmetry

22

Relabelling symmetry
✦ This relabelling symmetry plays an important

role in diffeomorphic matching of images

22

Relabelling symmetry
✦ This relabelling symmetry plays an important

role in diffeomorphic matching of images

✦ We have relaxed the endpoint condition by
requiring that embeddings are equivalent rather
than setting boundary condition for each
parameter value

22

Relabelling symmetry
✦ This relabelling symmetry plays an important

role in diffeomorphic matching of images

✦ We have relaxed the endpoint condition by
requiring that embeddings are equivalent rather
than setting boundary condition for each
parameter value

✦ The optimal solution has momentum which is
normal to the shape (see Miller, Trouvé and
Younes (2003))

22

Momentum condition

23

Momentum condition
Easiest to see this for the case of advected functions

23

Momentum condition
Easiest to see this for the case of advected functions

δ"

δu
= −π∇f

23

Momentum condition
Easiest to see this for the case of advected functions

δ"

δu
= −π∇f

The momentum field is normal to level sets of the image
function

23

Momentum condition
Easiest to see this for the case of advected functions

δ"

δu
= −π∇f

This is closely linked to the Clebsch representation of fluid
dynamics, and the Kelvin circulation theorem

The momentum field is normal to level sets of the image
function

23

Particle-mesh
discretisation

24

Particle-mesh method

25

✦ Lagrangian particles moving with the flow
represent the movement of the embedded
curve/surface

Particle-mesh method

25

✦ Lagrangian particles moving with the flow
represent the movement of the embedded
curve/surface

✦ Velocity represented on a fixed mesh

Particle-mesh method

25

✦ Lagrangian particles moving with the flow
represent the movement of the embedded
curve/surface

✦ Velocity represented on a fixed mesh

✦ Closely related to Hamiltonian particle-mesh
method (HPM) for shallow-water equations
(Frank, Gottwald, Reich)

Particle-mesh method

25

Interpolation

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1

26

Interpolation

u(x) =
∑

k

ukψk(x)

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1

26

Interpolation

u(x) =
∑

k

ukψk(x)

∂

∂t
Qt(s) =

∑

k

ukψk(Qt(s))

Dynamical condition becomes

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1

26

Interpolation

u(x) =
∑

k

ukψk(x)

∂

∂t
Qt(s) =

∑

k

ukψk(Qt(s))

Dynamical condition becomes

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1

Now restrict to a finite set of points {Qβ}
np

β=1

Q̇β =
∑

k

ukψk(Qβ)

26

Particle-mesh equations
We adopt a geometric approach by trying to exactly

optimise a discretised functional

would be
momentum
map if
action

27

Particle-mesh equations
We adopt a geometric approach by trying to exactly

optimise a discretised functional

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

would be
momentum
map if
action

27

Particle-mesh equations
We adopt a geometric approach by trying to exactly

optimise a discretised functional

min
u,Q,P





∫ 1

0



‖u‖2

g +
∑

β

P β ·

(

Q̇β −
∑

k

ukψk(Qβ)

)



 dt +
1

σ2
f̂(Q(1))





would be
momentum
map if
action

27

Particle-mesh equations
We adopt a geometric approach by trying to exactly

optimise a discretised functional

Semi-discrete equations are

Q̇β =
∑

k ukψk(Qβ)
Ṗ β = −P β ·

∑
k uk∇ψk(Qβ)

∂
∂uk

‖u‖2
g =

∑
β P βψk(Qβ)

min
u,Q,P





∫ 1

0



‖u‖2

g +
∑

β

P β ·

(

Q̇β −
∑

k

ukψk(Qβ)

)



 dt +
1

σ2
f̂(Q(1))





would be
momentum
map if
action

27

Particle-mesh equations
We adopt a geometric approach by trying to exactly

optimise a discretised functional

Semi-discrete equations are

Q̇β =
∑

k ukψk(Qβ)
Ṗ β = −P β ·

∑
k uk∇ψk(Qβ)

∂
∂uk

‖u‖2
g =

∑
β P βψk(Qβ)

∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s))

T · P t(s)
mt =

∫
S

P t(s)δ(x − P t(s))ds

min
u,Q,P





∫ 1

0



‖u‖2

g +
∑

β

P β ·

(

Q̇β −
∑

k

ukψk(Qβ)

)



 dt +
1

σ2
f̂(Q(1))





would be
momentum
map if
action

27

Discrete matching condition

28

Discrete matching condition
Use a particle-mesh approach

28

Discrete matching condition
Use a particle-mesh approach

µ1

k =
∑

β

µ̂A
β ψk(Qβ(1))

µB
k =

∑

β

µ̂B
β ψk(QB

β)

28

Discrete matching condition
Use a particle-mesh approach

µ1

k =
∑

β

µ̂A
β ψk(Qβ(1))

µB
k =

∑

β

µ̂B
β ψk(QB

β)

f̂(Q(1)) =
∑

kl

Kklνkνl, νk = µ1

k − µB
k

28

Time discretisation
Discretise in time in the functional

min
u,Q,P



∆t

N
∑

n=1



‖un−1‖2

g +
∑

β

P n−1

β ·

(

Qn
β − Qn−1

β

∆t
−

∑

k

un−1

k ψk(Qn−1

β)

)



 dt +
1

σ2
f̂(QN)





Get symplectic Euler discretisation

Qn
β = Qn−1

β + ∆t
∑

k ukψk(Qn−1

β)
P n

β = P n−1

β − ∆tP n
β ·

∑
k uk∇ψk(Qn−1

β)
∂

∂uk
‖un−1‖2

g =
∑

β P n−1

β ψk(Qn−1

β)

29

Time discretisation
Discretise in time in the functional

min
u,Q,P



∆t

N
∑

n=1



‖un−1‖2

g +
∑

β

P n−1

β ·

(

Qn
β − Qn−1

β

∆t
−

∑

k

un−1

k ψk(Qn−1

β)

)



 dt +
1

σ2
f̂(QN)





Get symplectic Euler discretisation

Qn
β = Qn−1

β + ∆t
∑

k ukψk(Qn−1

β)
P n

β = P n−1

β − ∆tP n
β ·

∑
k uk∇ψk(Qn−1

β)
∂

∂uk
‖un−1‖2

g =
∑

β P n−1

β ψk(Qn−1

β)

Can get higher-order methods by discretising the dynamical
equation with a RK method; get a symplectic PRK method

29

Discrete conservation
Although we have a discrete set of particles, we still have

continuous velocity fields defined by

30

Discrete conservation
Although we have a discrete set of particles, we still have

continuous velocity fields defined by

u(x, t) =
∑

k

ukψk(x)

30

Discrete conservation
Although we have a discrete set of particles, we still have

continuous velocity fields defined by

Hence it is possible to choose a continuous curve through
the set of points and to ask how it evolves

u(x, t) =
∑

k

ukψk(x)

30

Discrete conservation
Although we have a discrete set of particles, we still have

continuous velocity fields defined by

Hence it is possible to choose a continuous curve through
the set of points and to ask how it evolves

u(x, t) =
∑

k

ukψk(x)

∂

∂t
Q(s, t) =

∑

k

ukψk(Q(s, t))

30

Discrete conservation

31

Discrete conservation
More generally, we can follow how the flow map evolves

over the whole space

31

Discrete conservation
More generally, we can follow how the flow map evolves

over the whole space

∂

∂t
g(x, t) =

∑

k

ukψk(g(x, t))

31

Discrete conservation
More generally, we can follow how the flow map evolves

over the whole space

∂

∂t
g(x, t) =

∑

k

ukψk(g(x, t))

and we can follow the Jacobian of this map

31

Discrete conservation
More generally, we can follow how the flow map evolves

over the whole space

∂

∂t
g(x, t) =

∑

k

ukψk(g(x, t))

and we can follow the Jacobian of this map

∂

∂t

∂g(x, t)

∂x
=

∑

k

uk∇ψk(g(x, t)) ·
∂g(x, t)

∂x

31

Discrete conservation

32

Discrete conservation
As a post-processing step, this equation is independent for

each point, and in particular:

32

Discrete conservation
As a post-processing step, this equation is independent for

each point, and in particular:

∂

∂t
Jβ =

∑

k

uk∇ψk(Qβ) · Jβ , Jβ =
∂g

∂x
(Qβ(t), t)

32

Discrete conservation
As a post-processing step, this equation is independent for

each point, and in particular:

∂

∂t
Jβ =

∑

k

uk∇ψk(Qβ) · Jβ , Jβ =
∂g

∂x
(Qβ(t), t)

This gives a simple way of computing Jacobi information

32

Discrete conservation

33

Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

33

Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

33

Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

δQβ(t) = Jβ(t)Qβ(0)

33

Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

33

Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)

33

Discrete conservation

This property is preserved by any variational integrator

A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)

33

Discrete conservation

This property is preserved by any variational integrator
This means that, if the momentum starts normal to the
shape it will stay normal to the shape in the numerical

solution

A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)

33

Solution methods
Three different approaches

34

Solution methods
Three different approaches

Find initial conditions P
0

β which minimise f̂(QN)

subject to the dynamical equations for P , Q

34

Solution methods
Three different approaches

Find initial conditions P
0

β which minimise f̂(QN)

subject to the dynamical equations for P , Q

Find a time series {P n
β}

N−1

n=0 which minimises the
matching penalty term subject to the dynamical

equations for Q

34

Solution methods
Three different approaches

Find initial conditions P
0

β which minimise f̂(QN)

subject to the dynamical equations for P , Q

Find a time series {P n
β}

N−1

n=0 which minimises the
matching penalty term subject to the dynamical

equations for Q

Extremise the discrete functional directly

34

Some movies

35

What does the shortest path
between two shapes look like?

36

What does the shortest path
between two shapes look like?

36

37

37

Summary
✦ Variational shape matching is useful in a wide

variety of applications: analysis of shape
datasets and shape optimisation

✦ Necessary when large deformations are needed

✦ Shapes are embedded in a flow which follows
geodesics in diffeomorphism group

✦ Particle-mesh method gives simple
discretisation with geometric properties for
matching curves/surfaces

38

Outlook

✦ Collaborations with engineers at ICL and
elsewhere

✦ Parallel algorithm for matching complex shapes

✦ Developing statistical analysis of shapes with
Sofia Olhede (Maths, ICL→UCL)

39

The End

40

