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Example: control of rigid body

Q̇ = QΩ with ΩT = −Ω ∈ so(3).

see Bloch, Crouch, Marsden & Ratiu, 1998

Q(0) = Q0, Q(1) = Q1

∫ 1

0

1

2
Ω · IΩ d tMinimise
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δ

∫ 1

0

1

2
Ω · IΩ + PT

· (Q̇ − QΩ) d t = 0

IΩ = QT P,

Q̇ = QΩ,

Ṗ = PΩ.

d

dt
IΩ = Q̇T P + QT Ṗ ,

= (QΩ)T P + QT PΩ,

= ΩT (QT P ) + (QT P )Ω,
= ΩT (IΩ) + (IΩ)Ω.
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When in general can P 
and Q be eliminated 
from the dynamical 

equations?

6



ξ ∈ V Q̇ = LξQQ ∈ M
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Ṗ = − (TQLξ)
T

P,

〈P " Q, ξ〉
V

= −〈P ,LξQ〉
T∗M

ξ ∈ V Q̇ = LξQQ ∈ M

7



δ

∫ 1

0

"(ξ) + 〈P, Q̇ − LξQ〉d t = 0

δ"
δξ

= −P " Q,

Q = LξQ,

Ṗ = − (TQLξ)
T

P,

〈P " Q, ξ〉
V

= −〈P ,LξQ〉
T∗M

ξ ∈ V Q̇ = LξQQ ∈ M

Hamiltonian H = !(ξ(P, Q))
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 Thm: The cotangent variables             may be eliminated to 
give an equation for     only if and only if the velocity map

is a Lie algebra action

(P, Q)

Lξ

ξ

In that case, the evolution equation obtained is the 
Euler-Poincaré equation

d

dt

δl

δξ
+ ad

∗

ξ

δl

δξ
= 0

P ! Qand is a cotangent-lifted momentum map
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Variational integrators 
✦ This allows a method for designing variational 

integrators for the EP equation

✦ Simply discretise the variational principle and 
derive the equations

✦ The resulting numerical method can be reduced 
to a discrete EP equation provided that the 
discretisation is left-invariant

✦ See: Marsden and Bou-Rabee (2007) and 
Cotter and Holm (submitted 2007)
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Variational image 
matching
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When the control variables are vector fields on a manifold, 
they can act on a number of different spaces.
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✦ Embeddings

✦ Functions

✦ Vector fields

✦ ...

Q : S !→ Ω,
∂

∂t
Q

t
(s) = ut(Qt

(s))

For a velocity field          defined on the domain     with 
appropriate boundary conditions:

ut(x) Ω

f : Ω !→ R,
∂

∂t
ft(x) + ut(x) · ∇f

t
(x) = 0

ξ : Ω !→ TΩ,
∂

∂t
ξ

t
+ (ut · ∇)ξ

t
= (ξ

t
· ∇)ut

When the control variables are vector fields on a manifold, 
they can act on a number of different spaces.

All of these spaces have roles in imaging

For the rest of the talk specialise to embeddings
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What does the shortest path
between two shapes look like?
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What can we do with these paths?

✦ Length along path measures 
amount of deformation from 
one shape to another

✦ A way of comparing and 
classifying shapes

✦ Deformation from one shape 
to another is encoded in 
initial conditions for 
deformation velocity field, 
where we can perform linear 
statistics
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∫ 1
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‖ut‖
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dt
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Optimisation problem
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Solve

min

{
∫ 1

0

‖ut‖
2
dt

}

Optimisation problem

subject to
∂

∂t
Q

t
(s) = ut(Qt

(s)), ∀s ∈ (0, 2π]

and

Q0(s) = QA(s), ∀s ∈ (0, 2π], Q1 ≡ QB
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Constraints

✦ Dynamical constraint: shape is moved by the 
flow

✦ Matching condition: shapes are “equivalent” 
after deformation

✦ For now, matching condition is a “soft 
constraint” enforced via penalty term
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Dynamical constraints
Enforce dynamical equation using Lagrange multipliers
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min
u,Q,P
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∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·
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∂

∂t
Qt(s) − ut(Qt(s))

)

ds

)

dt +
1

σ2
f [Q1]

)
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Dynamical constraints
Enforce dynamical equation using Lagrange multipliers

min
u,Q,P

(
∫ 1

0

(

‖ut‖
2 +

∫

S

P t(s) ·

(

∂

∂t
Qt(s) −

∫

Ω

ut(x)δ(x − Qt(s))dV (x)

)

ds

)

dt +
1

σ2
f [Q1]

)

Euler-Lagrange equations for t<1

where

‖ut + εû‖2 = ‖ut‖
2 + ε

∫
Ω

mt · ûdV (x) + O(ε2)

∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s)))

T P t(s)
mt(x) =

∫
S

P t(s)δ(x − Qt(s)) d s
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Momentum formula
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Ω
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Momentum formula
For example: ‖u‖2 =

1

2

∫
Ω

|u|2 + α
2‖∇u‖2dV (x)

‖u + εû‖2 = ‖u‖2 + ε

∫
Ω

(1 − α
2∇2)u · ûdV (x) + O(ε2)

m = (1 − α
2
∇

2)uSo

Equations become
∂

∂t
Qt(s) = ut(Qt(s))

∂

∂t
P t(s) = −(∇u(Qt(s)))

T P t(s)
(1 − α2∇2)ut(x) =

∫
S

P t(s)δ(x − Qt(s)) d s
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Elimination
For any choice of norm, we can eliminate P and Q to get an 

equation purely in terms of u
∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0
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For any choice of norm, we can eliminate P and Q to get an 

equation purely in terms of u

This is the equation for geodesics on the diffeomorphism 
group with metric          , known as EPDiff (Holm and 

Marsden, 2004)
‖ut‖

2

For our example norm, we get the n-dimensional Camassa-
Holm equation (Holm, Marsden and Ratiu, 1998)

In 1-dimension this becomes (Camassa and Holm, 1993)

mt +
∂m

∂x
u + 2

∂u

∂x
m = 0, m = u − α2

∂2u

∂x2

∂

∂t
m + ad∗

u
m =

∂

∂t
m + ∇ · (um) + (∇u)T

m = 0
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Matching condition
We don’t want to require that specific points on the shapes 

get matched to each other (landmark matching)
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Matching condition
We don’t want to require that specific points on the shapes 

get matched to each other (landmark matching)

Density matching condition (Glaunes et al, 2005)

dµ1(x) =

∫
S

µ̂A(s)δ(x − Q1(s)) dsdV (x)

dµA(x) =

∫
S

µ̂A(s)δ(x − QA(s)) dsdV (x)

dµB(x) =

∫
S

µ̂B(s)δ(x − QB(s)) dsdV (x)
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We don’t want to require that specific points on the shapes 

get matched to each other (landmark matching)

Density matching condition (Glaunes et al, 2005)

dµ1(x) =

∫
S

µ̂A(s)δ(x − Q1(s)) dsdV (x)

dµA(x) =

∫
S

µ̂A(s)δ(x − QA(s)) dsdV (x)

dµB(x) =

∫
S

µ̂B(s)δ(x − QB(s)) dsdV (x)

f [Q1] =

∫
Ω

∫
Ω

K(x, y)dν(x)dν(y), dν = dµB − dµ1

Penalty functional is 
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Momentum

✦ Geodesic is determined by initial conditions for 
shape coordinates Q and conjugate momenta P

✦ Given a reference shape, have an isomorphism 
between any topologically equivalent shape and  
initial conditions for P

✦ P is in a linear space so we can apply linear 
statistical techniques to this representation
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✦ Corresponding conserved momenta is

P · dQ
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Relabelling symmetry
✦ This relabelling symmetry plays an important 

role in diffeomorphic matching of images

✦ We have relaxed the endpoint condition by 
requiring that embeddings are equivalent rather 
than setting boundary condition for each 
parameter value

✦ The optimal solution has momentum which is 
normal to the shape (see Miller, Trouvé and 
Younes (2003))
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Momentum condition
Easiest to see this for the case of advected functions
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Momentum condition
Easiest to see this for the case of advected functions

δ"

δu
= −π∇f

This is closely linked to the Clebsch representation of fluid 
dynamics, and the Kelvin circulation theorem

The momentum field is normal to level sets of the image 
function
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Particle-mesh 
discretisation
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Particle-mesh method
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✦ Lagrangian particles moving with the flow 
represent the movement of the embedded 
curve/surface

✦ Velocity represented on a fixed mesh

✦ Closely related to Hamiltonian particle-mesh 
method (HPM) for shallow-water equations 
(Frank, Gottwald, Reich)

Particle-mesh method
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Interpolation

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1
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Interpolation

u(x) =
∑

k

ukψk(x)

∂

∂t
Qt(s) =

∑

k

ukψk(Qt(s))

Dynamical condition becomes

define a velocity field everywhere on Ω

Given a set of velocities stored at grid points{uk}
ng

k=1
{xk}

ng

k=1

Now restrict to a finite set of points {Qβ}
np

β=1

Q̇β =
∑

k

ukψk(Qβ)

26



Particle-mesh equations
We adopt a geometric approach by trying to exactly 

optimise a discretised functional

would be 
momentum 
map if 
action
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mt =

∫
S

P t(s)δ(x − P t(s))ds

min
u,Q,P





∫ 1

0



‖u‖2

g +
∑

β

P β ·

(

Q̇β −
∑

k

ukψk(Qβ)

)



 dt +
1

σ2
f̂(Q(1))





would be 
momentum 
map if 
action
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Discrete matching condition
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Discrete matching condition
Use a particle-mesh approach

µ1

k =
∑

β

µ̂A
β ψk(Qβ(1))

µB
k =

∑

β

µ̂B
β ψk(QB

β )
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Discrete matching condition
Use a particle-mesh approach

µ1

k =
∑

β

µ̂A
β ψk(Qβ(1))

µB
k =

∑

β

µ̂B
β ψk(QB

β )

f̂(Q(1)) =
∑

kl

Kklνkνl, νk = µ1

k − µB
k

28



Time discretisation
Discretise in time in the functional

min
u,Q,P



∆t

N
∑

n=1



‖un−1‖2

g +
∑

β

P n−1

β ·

(

Qn
β − Qn−1

β

∆t
−

∑

k

un−1

k ψk(Qn−1

β )

)



 dt +
1

σ2
f̂(QN )





Get symplectic Euler discretisation

Qn
β = Qn−1

β + ∆t
∑

k ukψk(Qn−1

β )
P n

β = P n−1

β − ∆tP n
β ·

∑
k uk∇ψk(Qn−1

β )
∂

∂uk
‖un−1‖2

g =
∑

β P n−1

β ψk(Qn−1

β )
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Time discretisation
Discretise in time in the functional

min
u,Q,P



∆t

N
∑

n=1



‖un−1‖2

g +
∑

β

P n−1

β ·

(

Qn
β − Qn−1

β

∆t
−

∑

k

un−1

k ψk(Qn−1

β )

)



 dt +
1

σ2
f̂(QN )





Get symplectic Euler discretisation

Qn
β = Qn−1

β + ∆t
∑

k ukψk(Qn−1

β )
P n

β = P n−1

β − ∆tP n
β ·

∑
k uk∇ψk(Qn−1

β )
∂

∂uk
‖un−1‖2

g =
∑

β P n−1

β ψk(Qn−1

β )

Can get higher-order methods by discretising the dynamical 
equation with a RK method; get a symplectic PRK method
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Discrete conservation
Although we have a discrete set of particles, we still have 

continuous velocity fields defined by
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continuous velocity fields defined by

u(x, t) =
∑

k

ukψk(x)
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Discrete conservation
Although we have a discrete set of particles, we still have 

continuous velocity fields defined by

Hence it is possible to choose a continuous curve through 
the set of points and to ask how it evolves

u(x, t) =
∑

k

ukψk(x)

∂

∂t
Q(s, t) =

∑

k

ukψk(Q(s, t))

30



Discrete conservation
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over the whole space 
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Discrete conservation
More generally, we can follow how the flow map evolves 

over the whole space 

∂

∂t
g(x, t) =

∑

k

ukψk(g(x, t))
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g(x, t) =
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and we can follow the Jacobian of this map
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Discrete conservation
More generally, we can follow how the flow map evolves 

over the whole space 

∂

∂t
g(x, t) =

∑

k

ukψk(g(x, t))

and we can follow the Jacobian of this map

∂

∂t

∂g(x, t)

∂x
=

∑

k

uk∇ψk(g(x, t)) ·
∂g(x, t)

∂x
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As a post-processing step, this equation is independent for 

each point, and in particular:
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Discrete conservation
As a post-processing step, this equation is independent for 

each point, and in particular:

∂

∂t
Jβ =

∑

k

uk∇ψk(Qβ) · Jβ , Jβ =
∂g

∂x
(Qβ(t), t)
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Discrete conservation
As a post-processing step, this equation is independent for 

each point, and in particular:

∂

∂t
Jβ =

∑

k

uk∇ψk(Qβ) · Jβ , Jβ =
∂g

∂x
(Qβ(t), t)

This gives a simple way of computing Jacobi information
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Discrete conservation
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A variation in the initial conditionsδQβ(0) Qβ(0)
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Discrete conservation
A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with 
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)
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Discrete conservation

This property is preserved by any variational integrator

A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with 
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)
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Discrete conservation

This property is preserved by any variational integrator
This means that, if the momentum starts normal to the 
shape it will stay normal to the shape in the numerical 

solution

A variation in the initial conditionsδQβ(0) Qβ(0)

leads to a variation in the entire trajectory given by

This variation is a symmetry of the action principle, with 
corresponding conserved momentum

δQβ(t) = Jβ(t)Qβ(0)

P β · Jβ(t)
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Three different approaches
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Find a time series {P n
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34



Solution methods
Three different approaches

Find initial conditions P
0

β which minimise f̂(QN )

subject to the dynamical equations for P , Q

Find a time series {P n
β}

N−1

n=0 which minimises the 
matching penalty term subject to the dynamical

equations for Q

Extremise the discrete functional directly
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Some movies
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What does the shortest path
between two shapes look like?
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What does the shortest path
between two shapes look like?
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Summary
✦ Variational shape matching is useful in a wide 

variety of applications: analysis of shape 
datasets and shape optimisation

✦ Necessary when large deformations are needed

✦ Shapes are embedded in a flow which follows 
geodesics in diffeomorphism group

✦ Particle-mesh method gives simple 
discretisation with geometric properties for 
matching curves/surfaces
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Outlook

✦ Collaborations with engineers at ICL and 
elsewhere

✦ Parallel algorithm for matching complex shapes

✦ Developing statistical analysis of shapes with 
Sofia Olhede (Maths, ICL→UCL)
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The End
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