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Euler Eqns

Eulerian
{

∂tu + u · ∇u +∇p = 0,
−∆p = ∇ · (u · ∇u)

∇ · u = 0 = invariant constraint of incompressibility

Lagrangian


a 7→ X(a, t), X(a,0) = a,

∂2
t X + (∇xp)(X, t) = 0,

−∆xp =

∇x ·
(
(∂tX ◦X−1) · ∇x(∂tX ◦X−1)

)

det (∇aX) = 1 invariant constraint of incompressibility



Back-to-Labels
{

∂tA + u · ∇A = 0, A(x,0) = x,
u = P ((∇A)∗u0(A))

Theorem 1 u0 ∈ Cs, s > 1, ∇ · u0 = 0, ∇ × u0 ∈ Lp, 1 < p < ∞.
∃T > 0, A, u ∈ L∞([0, T ], Cs).

Filtered
{

∂tA + u · ∇A = 0, A(x,0) = x,
u = JαP ((∇A)∗u0(A))



ω = ∇× u.

Vorticity evolution

∂tω + u · ∇ω = ω · ∇u

Regularity = smooth solution on time interval [0, T ].

BKM: Sufficient for regularity:∫ T

0
‖ω‖L∞(dx)dt < ∞

Amplification factor of arbitrary tracers∫ T

0
‖∇u‖L∞(dx)dt < ∞



Surface Quasi-Geostrophic equation = QG

QGκs{
∂tθ + u · ∇θ + κΛsθ = 0,

u = R⊥θ

with Λ = (−∆)1/2 the Zygmund operator and R = (∇)Λ−1 Riesz oper-
ators, κ ≥ 0, s > 0, n = 2.

Instead of vortex lines: iso-θ lines.

“Vorticity” evolution

∂t

(
∇⊥θ

)
+u ·∇

(
∇⊥θ

)
+κΛs

(
∇⊥θ

)
=

(
∇⊥θ

)
·∇u

Same BKM.



Weak Solutions for Nonlinear Eqns

No such thing, in general. Typical methodology: good approximation, inte-
gration by parts, weak continuity.

Continuity does not imply weak continuity. Simple example: u 7→ ‖u‖2

with u ∈ L2([0,2π]). Take un(x) = sin(nx) for x ∈ [0,2π]: converges
weakly to zero, norms bounded away from zero.

Weak solutions: solve the equation in a very large space. (Not enough to
have equation solved almost everywhere. Not enough to have the nonlin-
ear term well-defined.)



Weak Solutions

(E)

u ∈ Cw[0, T ;L2
loc,u]∫

u(t) ·ϕdx−
∫

u0 ·ϕdx =
∫ t

0

∫
Trace [(u⊗ u) (∇ϕ)] dxds

(QGκs)

θ ∈ Cw[0, T ;L2
loc,u] ∩ L2[0, T ;H

s
2]

u = R⊥θ,∫
θ(t) ·ϕdx−

∫
θ0 ·ϕdx =

∫ t

0

∫
[(θu) · ∇ϕ− κθΛsϕ] dxds



Desirable: locally square integrable, evolutionary weak solutions obtained
as limits of good approximate solutions uε. Needed: weak continuity of
approximations in L2. (Weak continuity is stronger than strong continuity).

lim
ε→0

∫
R3

Trace [(uε ⊗ uε) (∇ϕ)] dx =
∫
R3

Trace [(u⊗ u) (∇ϕ)] dx

for all smooth divergence–free ϕ, when

lim
ε→0

∫
R3

(uε · ϕ) dx =
∫
R3

(u · ϕ) dx

holds for all ϕ. Known for surface QG (Resnick, ’95), not for Euler. The
reason is structural not dimensional.



Weak solutions for QG

∂tθ + u · ∇θ = 0, u = R⊥θ.

For periodic θ =
∑

j∈Z2 θ̂(j)ei(j·x) infinite ODE:

d

dt
θ̂(l) =

∑
j+k=l

(
j⊥ · k

)
|j|−1θ̂(j)θ̂(k)

Using the antisymmetry:

d
dtθ̂(l) =

∑
j+k=l γ

l
j,kθ̂(j)θ̂(k)

γl
j,k = 1

2(j
⊥ · k)

(
1
|j| −

1
|k|

)



∣∣∣γl
j,k

∣∣∣ ≤ |l|2

max{|j| , |k|}

Consequently

‖(−∆)−1 [B(θ1, θ1)−B(θ2, θ2)] ‖w ≤
C

{
‖θ1 − θ2‖w

(
1 + log+ ‖θ1 − θ2‖w

)} (
‖θ1‖L2 + ‖θ2‖L2

)

with ‖f‖w = supj∈Z2

∣∣∣f̂(j)
∣∣∣. Quasi-Lipschitz, with loss of two derivatives.

Loss of derivatives does not impede existence theory, but prevents a proof
of uniqueness.



Dissipative QG

Regularity and uniqueness: with critical dissipation (s = 1): Cordoba-Wu-
C (small data), Kiselev-Nazarov-Volberg and Caffarelli-Vasseur, all data.
For Burgers, there is blow up at s = 1! (Kiselev, Nazarov, Shterenberg).

For supercritical dissipation (0 < s < 1) there is a gap in passing from L∞

to Cδ, no gap in passing from L2 to L∞, nor from Cδ to C∞ if δ > 1 − s

(Wu-C).

(QGκs)

∂tθ + u · ∇θ + κΛsθ = 0

with u = R⊥θ, κ > 0, 0 < s.

The theorems:



Theorem 2 Let θ0 ∈ L2(Rn) and let θ be a corresponding Leray-Hopf
weak solution of QGκs:

θ ∈ L∞([0,∞), L2(Rn)) ∩ L2([0,∞);Hs/2(Rn)).

Then, for any t > 0,

sup
Rn

|θ(x, t)| ≤ C
‖θ0‖L2

t
n
2s

.

As a consequence,

‖u(·, t)‖BMO(Rn) ≤ C
‖θ0‖L2

t
n
2s

for any t > 0.

Idea of proof: (De Giorgi)

θk = (θ − Ck)+, Ck = M(1− 2−k),



M to be determined. Fix any t0 > 0. Let tk = t0(1− 2−k). Consider the
quantity Uk,

Uk = sup
t≥tk

∫
θ2
k(x, t) dx + 2

∫ ∞

tk

∫
|Λ

s
2θk|2dx dt,

Vk =
2γk Uk

t
2/(q−2)
0 M2 2(−γq−2)/(q−2)

with γ =
2(q − 1)

q − 2
> 0

with q = q(s) > 2. Using Gagliardo-Nirenberg and the Cordoba-Cordoba-
Wu-C dissipativity

Vk ≤ V
q
2

k−1

Choosing M large enough, V0 < 1 and then Vk → 0. This implies bound-
edness in terms of the initial L2 norm, and scaling invariance implies the
bound.



Theorem 3 Let θ be a solution of QGκs satisfying

θ ∈ L∞([0,∞), L2(Rn)) ∩ L2([0,∞);Hs/2(Rn)).

Let t0 > 0. Assume that

θ ∈ L∞(Rn × [t0,∞))

and

u ∈ L∞([t0,∞);C1−s(Rn)).

Then θ is in Cδ(Rn × [t0,∞)) for some δ > 0.

Proof highly technical:

Ideas: 1) Sylvestre-Caffarelli harmonic extension of fractional Laplacian.
2) De Giorgi quantitative isoperimetric inequality. 3) Caffarelli-Vasseur di-
minishing oscillation lemma. 4) De Giorgi blowup methodology.



Theorem 4 Let θ be a Leray-Hopf weak solution of QGκs,

θ ∈ L∞([0,∞);L2(R2)) ∩ L2([0,∞);Hs/2(R2)).

Let δ > 1− s and let 0 < t0 < t < ∞. If

θ ∈ L∞([t0, t];Cδ(R2)),

then

θ ∈ C∞((t0, t]× R2).

Idea of proof: Littlewood-Paley energy estimates



Littlewood-Paley decomposition.

u =
∞∑

j=−1

∆ju

suppF(∆j(u)) ⊂ 2j[12, 5
4]

∆j∆k 6= 0 ⇒ |j − k| ≤ 1,(
∆j + ∆j+1 + ∆j+2

)
∆j+1 = ∆j+1

∆j
(
Sk−2(u)∆k(v)

)
6= 0 ⇒ k ∈ [j − 2, j + 2]

Sk(u) =
∑k

q=−1 ∆q.



∆j = Ψj(D) = Ψ0(2
−jD), ∆−1u = Φ−1(D)u.

Φ−1: radial, nonincreasing, C∞
Φ−1 = 1, 0 ≤ r ≤ a

Φ−1 = 0, r ≥ b
0 < a < b < 1

Ψ0(r) = Φ−1(r/2)−Φ−1(r), Ψj(r) = Ψ0(2
−jr).

(Ψ(D)u)(x) = (2π)−n
∫
Rn

ei(x·ξ)Ψ(ξ)û(ξ)dξ

û(ξ) =
∫
Rn e−i(x·ξ)u(x)dx. a < b < 4

3a (e.g. a = 1/2, b = 5/8 )



Inhomogeneous Besov space

‖u‖Bs
p,q

=
∥∥∥∥{

2sj‖uj‖Lp

}
j

∥∥∥∥
`q(N)

.

The space Bs
p,c(N) is the subspace of Bs

p,∞ formed with functions such
that

lim
j→∞

2sj‖uj‖Lp = 0.

Bernstein Inequalities

‖∆ju‖Lb ≤ 2jd(1
a−

1
b)‖∆ju‖La for b ≥ a ≥ 1.



Besov Space Embeddings
If b ≥ a ≥ 1

Bs
a,r ⊂ B

s−d

(
1
a−

1
b

)
b,r ,

B0
a,2 ⊂ La, for a ≥ 2.



Euler weak solutions: main difficulty

B(u, v) = P(u · ∇v) = ΛH(u⊗ v)

where

[H(u⊗ v)]i = Rj(ujvi) + Ri(RkRl(ukvl)),

P is the Leray-Hodge projector, Λ = (−∆)
1
2 is the Zygmund operator and

Rk = ∂kΛ
−1 are Riesz transforms.

∆q(B(u, v)) = Cq(u, v) + Iq(u, v)



Cq(u, v) =
∑

p≥q−2, |p−p′|≤2

∆q(ΛH(∆pu,∆p′v))

Iq(u, v) =
∑2

j=−2

[
∆qΛH(Sq+j−2u,∆q+jv) +

∆qΛH(Sq+j−2v,∆q+ju) ]

For L2 weak solutions it would be desirable to have a bound of the type

‖Λ−M (B(u1, u1)−B(u2, u2)) ‖w ≤
C‖u1 − u2‖a

w

[
‖u1‖L2 + ‖u2‖L2‖

]2−a

with a > 0 and ‖f‖w a weak enough norm so that weak convergence in
L2 implies convergence in the w norm, (e.g B−s

∞,∞, s > 3/2) and M as
large as needed. This is true for I(u, v) but not for C(u, v). For weak

solutions in B
1
3
3,q, C(u, v) is good and I(u, v) is bad.



Littlewood-Paley Energy Flux

ΠN :=
∫
R3

Trace [SN(u⊗ u)∇SN(u)] dx.

This is the (formal) time derivative

ΠN =
1

2

d

dt

∫
R3
|SN(u(t))|2 dx

of the energy contained in SN(u) when u solves the Euler equation.



Onsager Conjecture

u ∈ Cs, s >
1

3
⇔

dE

dt
= 0

Eyink, C-E-Titi, Duchon-Robert ′′ ⇒′′ .

Theorem 5 (Cheskidov-C-Friedlander-Shvydkoy) Weak solutions

u ∈ L3([0, T ], B
1/3
3,c(N))

of the Euler equations conserve energy. There exist functions in B
1/3
3,∞ that

are divergence-free and obey lim infN→∞ |ΠN | > 0.

Similar results for helicity. See also work of Chae. In two dimensions,
infinite time, damped and driven NS: absence of anomalous dissipation of
enstrophy. (Ramos-C.)



Idea of Proof

Let

K(j) =

 2
2j
3 , j ≤ 0;

2−
4j
3 , j > 0,

and

dj = 2j/3‖∆ju‖3, for j ≥ −1, dj = 0 for j < −1
d2 = {d2

j }j

Proposition 6 If u ∈ L2 then

|ΠN | ≤ C(K ∗ d2)3/2(N).



Consequently

lim sup
N→∞

|ΠN | ≤ lim sup
N→∞

d3
N .

Indeed, following C-E-T:

SN(u⊗ u)− SNu⊗ SNu = rN(u, u)− (u− SN)⊗ (u− SN),

with

rN(u, u) =
∫
R3

hN(y)(u(x− y)− u(x))⊗ (u(x− y)− u(x))dy,

and ĥN(ξ) = Φ−1(2
−Nξ). Substituting in definition of ΠN :

ΠN =
∫
R3

Trace[rN(u, u) · ∇SNu]dx

−
∫
R3

Trace[(u− SN)⊗ (u− SN) · ∇SNu]dx.

We bound the first term by

‖rN(u, u)‖3/2‖∇SNu‖3,



and use

‖rN(u, u)‖3/2 ≤
∫
R3
|hN(y)| ‖u(· − y)− u(·)‖23dy

Besov embedding and Bernstein inequalities:

‖u(· − y)− u(·)‖23 ≤ C
∑

j≤N

|y|222j‖∆ju‖23 + C
∑

j>N

‖∆ju‖23

= C24N/3|y|2
∑

j≤N

2−4(N−j)/3d2
j

+ C2−2N/3 ∑
j>N

22(N−j)/3d2
j

≤ C(24N/3|y|2 + 2−2N/3)(K ∗ d2)(N).



Collecting and integrating, we find∣∣∣∣∫R3
Trace[rN(u, u) · ∇SNu]dx

∣∣∣∣ ≤
C(K ∗ d2)(N)

(∫
R3
|hN(y)|24N/3|y|2dy + 2−2N/3

)  ∑
j≤N

22j‖∆ju‖23

1/2

≤ C(K ∗ d2)(N)2−2N/3

 ∑
j≤N

24j/3d2
j

1/2

≤ C(K ∗ d2)3/2(N)



Similarly, ∫
R3

Trace[(u− SN)⊗ (u− SN) · ∇SNu]dx

≤ ‖u− SNu‖23‖∇SNu‖3

≤ C

 ∑
j>N

‖∆ju‖23

  ∑
j≤N

22j‖∆ju‖23

1/2

≤ C(K ∗ d2)3/2(N).



Outlook

•Weak solutions in right spaces require special nonlinear structure.

•Supercritical QG problem open.

•Anomalous dissipation: close to optimal spaces.


