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Criticality in fluid mechanics

In shallow water, a uniform flow with velocity u and depth h,

Th -

is said to be critical when u? = gh (Froude number unity).

Another characterization: the flow is critical when the speed of a
plane wave in the linearization about uniform flow equals speed of
uniform flow:

speed of plane waves = =+./gh




Criticality in shallow water hydrodynamics

Shallow water equations
Ur+uux+ghy =0 and h;+ uhx+ huy =0.
Steady solutions realize constant values of Q and R
R=gh+}u® and Q= hu.

Given Q and R find values of h and u. Criticality:

e the state at which R is a minimum for fixed Q # 0
e the state at which Q is a maximum for fixed R > 0 (u > 0)

Q R fixed




Criticality and solitary waves

In shallow water, a uniform flow with velocity u and depth h,

h u—

_

is said to be critical when u? = gh (Froude number unity).
Criticality is a bifurcation point for solitary waves.

In this case, Froude number unity is a bifurcation point for the KdV
solitary wave (add dispersion to SWE to see this).




Generalize criticality to non-trivial states?

Use quasi-static approximation, or consider the flow to be
slowly-varying in the x—direction and use WKB theory

m GILL (1977) J. Fluid Mech.

m KILLWORTH (1992) J. Fluid Mech.

m JOHNSON & CLARKE (2001) Ann. Rev. Fluid Mech.

Define criticality to be when eigenvalues of the linearization
pass through zero.

m BENJAMIN (1971) A unified theory of conjugate flows,
Phil. Trans. Royal Soc. London A

But restricted to parallel flows (independent of x), and crmcahty .
is treated as a one-parameter problem. 233




Observation: uniform flows are relative equilibria

Criticality is an n—parameter problem with n = dim(g)
m (h, u) are coordinates for a Lie algebra
m (R, Q) are coordinates for a momentum map

Criticality of uniform flows corresponds to degeneracy of RE
Degenerate RE generate zero eigenvalues: a saddle-center
bifurcation transverse to the group orbit

Saddle-center leads to homoclinic bifurcation (SW)
m Role of curvature of the momentum map
m Geometric phase along group
m Thom-Boardman classification of singularities

Generalize criticality: can define criticality for any flow which canbe & .
characterized as a RE ! <A




G—equivariant Hamiltonian systems

Consider a Hamiltonian system with symmetry. For example, take
Ju;=VH(U), uecM=R2"2

and suppose that it is equivariant with respect to an n—dimensional
abelian Lie group G (subgroup of the Euclidean group) with Lie
algebra g, action ®4(u) and generator

d
EM(U) = % cbexp(f&)(u) , §€g.

s=0

Suppose G is symplectic and the Hamiltonian function is
G—invariant, etc., and momentum map

J: M—g".




Symplectic relative equilibria

Relative equilibria are solutions which travel along a group orbit at
constant speed. An RE is of the form

U(t) = Dexpre) () forsome ¢eg,
where ¢ : g — M is a critical point of the augmented Hamiltonian

He(u) := H(u) = (J(u) — 1, ) -

A critical point, ¢, of H. is a mapping from g into M. Substitution into
the momentum gives

p=dJdop(s).

a mapping from g into g*.

The equation DH; = 0 can also be interpreted as the Lagrange
necessary condition for a constrained variational principle: find cr|t|cal
points of H restricted to level sets of the momenta. 3

(cf. MARSDEN (1992), MARSDEN & RATIU (1994))




Degenerate relative equilibria

A RE is non-degenerate when the second variation of H; at a critical
point is a non-degenerate quadratic form on the subspace consisting
of vectors tangent to J=' (1) and transverse to the group orbit.

Four types of degeneracy

e Singularity of the momentum map.

Assume throughout that p is a regular value of the momentum map.
o Failure of G-Morse: the dimension of the kernel of the second

variation of H; is greater than the dimension of the group. Related to
Dc() singular.

o Failure of G-Morse:  fixed, but external parameters varied;
example: PALMORE, Measure of degenerate relative equilibria |, Ann.
Math. (1976).

e det[DP(c)] = 0, P(c) := J o ¢ and ¢ are coordinates for g.




Degenerate RE and the Jacobian

The key to the study of the nonlinear behaviour transverse to
the group orbit near degenerate RE is the geometry of

P:g—g".

The condition
det[DP(c)] =0,

defines a hypersurface in g with image in g*




Geometry of det[DP(c)] =0

When DP(c) has rank n — 1 there exists n € T¢ g
[DP(c)Jn =0.

The image of the hypersurface in g* can have singularities. By
introducing a metric, n can be interpreted as a normal vector to .
the surface in g*, at regular points on the surface.

The surface in g* is locally a barrier to the existence of RE.



Thom-Boardman singularity theory

For a mapping P : X — Y, with X, Y n—dimensional vector
spaces, the subsets

YK(P) = {c € X : rank(Jac(c))=n—k}

are known in singularity theory as the Thom-Boardman
singularities. Restrict to the case k = 1. There is a hierarchy of
singular sets, for example

21(P)>

is the set where Jacobian of the kernel of P restricted to ' (P)
drops in rank by one. The classification continues until the
dimension is exhausted. The connection with degenerate RE: ,

m Momentum map P(c) € ¥'(P) = saddle-center bifurcatior;‘j\l/,,‘«
m Nonlinearity: P(¢) ¢ X'"(P) = homoclinic bifurcation

y"P)=x! (P




Bifurcation of internal solitary waves

/////// _ 7

Taking a Boussinesq model for internal waves (e.g. CHOI & CAMASSA
(1999) J.Fluid Mech.), can formulate the steady part as a Hamiltonian
system on R8 with a three-dimensional group of affine translations.

The Lie algebra can be coordinatized by the parameters associated
with the uniform flow (hy, uy, u2), and the momentum map can be

coordinatized by (R, Qi, Qz) where R is the Bernoulli energy and Q; .
are the mass flux in each layer. Rigid lid implies hy + ho = d.




Criticality and geometry of P : g — g¢*

P(c) :=Joyp = R(c){T + Qi(c)és + Qa(C)ss s
with ¢ = (h1 , Uy, U2) and
R(c) = %p1uf — Spaul + (p1 — p2)gh
Qi(c) = pihu
Qz(C) = pz(d - h1)U2 .
(p1 —p2)9 p1ti —pal

DP(C) = p1Uy p1hy 0 ,
—pals 0 p2(d—Hy)

and there exists n satisfying Jac(c)n = 0 when f(¢) = 0 where

f(c) = det(Jac(e)) = p1p2(p1 — p2)ghi(d — hy) [1 — F — rF%]

where F? = u2/((1 — r)gh;) and r = pa/p1.
Plot the surface f(¢) = 0 and its image in the (R, Qs, Q) plane.



Criticality surfaces for two-layer flow




Criticality and df(c) - n

Now

f(c) := det[Jac(c)] = C {(1 —r)— ‘i _ rig

The criticality surface in (hy, us, U2) space is defined by f~'(0) and a
vector v is tangent to this surface if df - v = 0. Now,

C(u12 ru2  2u 2ru2>

df = = (L ——2 =2 =72
g\® mB' h' h

and so

SC< u? us
=% (0,8
(df, n) g VB T P2pe

(cf. B & Donaldson, Phys. Fluids, 2007)




Degeneracy of DP(c) and saddle-center

Linearize about a degnerate relative equilibrium

m 0 is an eigenvalue of geometric multiplicity n
m 0 is an eigenvalue of algebraic multiplicity 2n

m 0 is an eigenvalue of (at least) algebraic multiplicity 2n + 2
if and only if det[DP(c)] = 0 (invoking the G—Morse
hypothesis).

Saddle-center bifurcation of eigenvalues in the linearization
transverse to the group orbit corresponds to P(c) € X'(P).

Transform linearization to Williamson normal form.




Leading order nonlinear normal form

For values of the momenta in a neighbourhood of a degenerate
point,there exists coordinates
(A1y. .y Py Uy I, ..., In, v) € R2M2 satisfying

—% = I1—%/{U2+“',
% = SV,
_% - 0, j=1,....n
% = U+---
G gy, j=2...n
The coordinates (14, ..., ;) are local coordinates near a point

on the criticality hypersurface in P—space. The coordinate /1 is
associated with the direction transverse to the hypersurface, g
and bk, ..., I, are associated with directions tangent to the
image of the hypersurface det[DP(c)] = 0.




Formula for « and the symplectic signs

The coefficient of the nonlinear term in the normal form, «, can
be expressed in terms of the generalized eigenvectors,

k= —(€np1, DPH(€ni1,€ni1)) — 3(&1, DPH(&4, Eonr2))
+3(&1, D*H(&ni1, €2n11)) -

The sign s; = +1 is a symplectic invariant associated with the
symplectic Jordan theory.

The signs s; for j =2, ..., n are the signs of the nonzero
eigenvalues of DP(c).




x and the momentum map

The coefficient x has a characterization in terms of the
geometry of the momentum map P

k= ay(df(c),n),  f(c):= det[DP(c)],
where g is a positive constant.

Remark: « is the intrinsic second derivative' of the mapping
P(c) (e.g. PORTEOUS 1971, GOLUBITSKY & GUILLEMIN 1973).

(df(c),n) = Constant (D?P(c)(n,n), n).

! Thanks to James Montaldi (Manchester) for this observation. ;5.




Curvature of the momentum map

Let
g = Teg=haX, b=Ker(DP(c))

g = Tpeyg"=Yah,
It is the curvature of the graph of the function
A (c,s) = (n,P(c+ sn)),

on h x h* that appears in the normal form
d2
x = Constant —| (¢, s),
ds s=0

for some positive constant.

(cf. TJB, Preprint, 2006)




Leading order nonlinear normal form

Normal form transverse to the group

T P
au  _ .
ad = StV

Normal form tangent to the group

dj; i
-4 =0, j=1,...,n
d¢s

o= U

d‘ .

a?;‘j — S/l/+’ j:27...,n

Directional geometric phase, plus dynamic drift along the group*: i



Schematic of the geometric phase

¢

Ad




Homoclinic bifurcation from invariant tori

For illustration, consider a T?—equivariant Hamiltonian system on R®,
Jup=VH(u), ueRS,

with momentum map J.
RE associated with this group are tori,

u(t) = Sgn () -

Take coordinates wy and w» for the Lie algebra. The family of RE is
non-degenerate when

Py 9P dwi  wy

80.)1 8&)2 8I1 a12

det | 55 5p. | #0 equivalently det b | 70,
(9(4)1 8(.4)2 8/1 8/2

where (Py, P2) are the momenta evaluated on an RE, and (/, k) cam

be interpreted as values of level sets.




Near degeneracy, there exists new coordinates (¢1, ¢2, U, Iy, I, V)

satisfying
_av
it
au
dt
_d
at
doy
K
doz
dt
with

k= ag (df(w),n), f(w):=det [g%;

h— SRl o+
SV + -

0 j=1,2
u4+---
Solot -

oP,

Ow

Degenerate invariant tori and homoclinic bifurcation

9Py
ng
9P,
Bu.@

— There is a geometric phase shift on the invariant torus.
— A new mechanism for saddle-center bifurcation of tori?
— Even the case n =1 is new!
(B & DONALDSON (2005) Phys. Rev. Lett.)




The quasi-periodic saddle-center bifurcation

Reappraisal of HANSSMANN (1998)

HANSSMANN (1998) takes a saddle-center bifurcation in the
plane, and adds an integrable n—torus.

—% = A+ bw)u?
% = alw)v
_% -0
% = Wwj, j:1,...,n.

Then perturbation terms are added which break the symmetry
(integrability) and persistence of the bifurcation on Cantor
subsets of parameter space is proved.

See also BROER, HANSSMANN & YOU (2005).




allow water nhydrodynamics

7

Stokes waves in shallow water coupled to a mean flow are RE
associated with G = R? x S with R? associated with mean flow, and
S' associated with the periodic wave (the Stokes wave):

(h,u, k) — (R, Q, B)
When these RE are degenerate,

(R, Q, B)] o,

det [ o(h, u, k)

the flow is critical and a class of solitary waves is generated: steady a&
“dark solitary waves”. '

(cf. B & DONALDSON, J. Fluid Mech. 2006)




Model Hamiltonian system with S’ x R? symmetry

aAxx +2ib Ay + BIAPA = —2(Lhy + muy)A
rhy +cuxy = €(|A|2)X
Chy +SuUy = m(|A|2)X7

where a, b, 3,¢, m, r, s and ¢ are given (in general nonzero) real
parameters with rs — ¢ # 0. (For water waves ghy — ¢5 # 0.)

Juy = VH(u), ueR®.

When RE associated with the group S' x R? are degenerate, a
homoclinic bifurcation occurs which corresponds to a form of
steady dark solitary wave. Found also in full water wave
problem (cf. B & Donaldson J. Fluid Mech. 2006).




Schematic of the image of ¥'(P) for degenerate




Schematic of steady dark solitary waves
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Degenerate RE and internal solitary waves

m Two-layer flow with a rigid lid

m uniform flows = 3D RE, critical surface is 2D

m (df,n) = 0 separates solitary waves of elevation from
solitary waves of depression.

m 3D mean flow (uniform flow) coupled to a periodic wave =
4D RE, 3D critical surface, bif. to internal steady DSWs

m Two-layer flow with a free surface

m uniform flow = 4D RE, critical surface is 3D

m (df,n) = 0 is a 2D manifold

m uniform flow (mean flow) coupled to a periodic wave = 5D
RE, 4D critical surface, bif. to internal steady DSWs

Theory predicts manifold of bifurcating solitary waves from each
family of degenerate RE. The bifurcating SWs may have
exponentially small tails in the case of two layers with free surface.

(cf. B & DONALDSON, Phys Fluids (2007) + in preparation)




Remarks on dimension and group action

When the group has dimension n, 2n + 2 is the lowest
dimension phase space in which the phenomena can occur.

— Dimension N with N > 2n + 2: complementary dimensions
hyperbolic, can use center-manifold reduction.

— Dimension N with N > 2n + 2: complementary dimensions
elliptic, will get persistence issues and exponentially-small tails,
as in the case without symmetry (e.g. looss & Lombardi, J. Diff.
Eqgns 2006)

— When the group is non-abelian need to bring in more theory
to do the tangent/transverse splitting of the vectorfield (e.g.
ROBERTS, WULFF & LAMB J. Diff. Eqns 2002), but one expects
the basic idea to persist (geometry of momentum map on RE .
determining the nonlinear normal form transverse to group). &l




Infinite dimensions — with continuous spectrum

Suppose there is a continuous spectrum on the imaginary axis
and a saddle-center bifurcation

oo

Normal form theory goes through to leading order, but the
continuous spectrum will be an obstacle to persistence of the
homoclinic orbit.

This example arises in nonlinear Schrédinger equation with
non-Kerr nonlinearity where the RE is a solitary wave.




Saddle-center with infinite dimensional center

Formal normal form theory goes through to leading order for the
saddle-center coupled to an infinite number of elliptic modes.
But the elliptic modes will be an obstacle to persistence.

This example arises in the time-dependent water-wave
problem. There is a sequence (possibly infinite) of
saddle-center bifurcations, and the attendant homoclinic
bifurcations — have been found to be associated with a form of
wave breaking — micro-breakers. g

— LONGUET-HIGGINS & DOMMERMUTH, J. Fluid Mech. (1997)
— TJB, J. Fluid Mech. (2004)




— Generalization of criticality in fluid mechanics —

Hamiltonian formulation

Any flow that can be characterized as a RE has a concept
of criticality: degeneracy of the RE

Criticality generates solitary waves

Properties of the bifurcating solitary wave (homoclinic
orbit) encoded in the geometry of the momentum map
evaluated on a family of RE

Used to find new families of solitary waves in shallow water
hydrodynamics

New observations in dynamical systems: e.g. mechanism &
for homoclinic bifurcation from invariant tori. ‘
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