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Smooth and Discrete Integrable Systems and Optimal Control

In honor of Darryl Holm’s 60th Birthday

Anthony Bloch

Work with Peter Crouch, Arieh Iserles, Jerry Marsden, Tudor Ratiu and Amit Sanyal and

Darryl Holm

• Toda

• Symmetric rigid body equations – smooth and discrete

• Flows on Stiefel manfolds – Jacobi flow on ellipsoid

• Flows on Quadratic groups
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• Fluid Flows.

• Symmetric/Symplectic Flows and their Lie Poisson Structure

• Optimal Control.
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Rigid Body Equations:

Ṁ = [M,Ω], M = ΛΩ + ΩΛ

Symmetric Rigid Body Equations:

Q̇ = QΩ Ṗ = PΩ

Toda Flow:

Ẋ = [X,ΠSX ]
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Double Bracket Flow:

Ẋ = [X, [X,N ]]

– gradient but special case yields Toda.

(See B, Brockett and Ratiu)

Generalized Double Bracket Flow:

Ẋ = [X, [X,G(X −N)]]

– in particular G(X −N) = (X −N)k.

(See B and Iserles)

Infinite (dispersionless) flow:

ẋ = {x, {x, n}, x = x(z, θ).

(B. Brockett, Flashcka and Ratiu)
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Double Double Bracket Flow: Geodesic Flows on Grassmannians:

Ẋ = [X, [X,P ] Ṗ = [P, [X,P ]].

Flow on the symmetric matrices/symplectic groups

(B, Brockett and Crouch)

Ẋ = [X2, N ] = [X, [XN +NX ]

(B, Brinznescu,Iserles, Marsden, Ratiu)
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Matrix form of nonperiodic tridiagonal Toda:

d

dt
L = [B,L] = BL− LB, (0.1)

L =


b1 a1 0 · · · 0

a1 b2 a2 · · · 0
. . .

bn−1 an−1

0 an−1 bn



B =


0 a1 0 · · · 0

−a1 0 a2 · · · 0
. . .

0 an−1

0 −an−1 0


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The double bracket flow is a gradient flow on an adjoint orbitO endowed with the “standard”

or “normal” metric:

• When the matrix L in the double bracket flow is tridiagonal and the matrix N is the

diagonal matrix diag(1, 2, . . . n), the double bracket flow is both gradient and Hamiltonian on

a level set of its integrals – the Toda lattice flow.

• Level set noncompact and diffeomorphic to a product of lines, unlike many Hamiltonian

systems where the level set of the integrals is diffeomorphic to a torus.

Flow can be mapped into interior of Schur-Horn polytope, equilibria at the vertices.

Early key work on this: Moser, Symes, Deift, Nanda and Tomei.

Related flows: full Toda flows:

L̇ = [L, πSL]

.

See work of Deift, Li, Nanda, Tomei; Ercolani, Flaschka, Singer.
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PDE on Diff(Annulus)

ẋ = {x, {x, n}}
Special case: x(z, θ) = u(z) + 2v(z) cos θ.

Tridiagonal dispersionless Toda:

ut = 4vvz vt = vuz

.

Rearrangments of functions – infinite dimensional Schur-Horn.

More work on double brackets: recent work of Holm et. al.
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1 The n-dimensional Rigid Body.

• Here review the classical rigid body equations in in n dimensions.

Use the following pairing on so(n), the Lie algebra of the n-dimensional proper rotation

group SO(n):

〈ξ, η〉 = −1

2
trace(ξη).

Use this inner product to identify so(n)∗ so(n).

• Recall from Manakov [1976] and Ratiu [1980] that the left invariant generalized rigid body

equations on SO(n) may be written as

Q̇ = QΩ

Ṁ = [M,Ω] , (RBn)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of the body), Ω =

Q−1Q̇ ∈ so(n) is the body angular velocity, and the body angular momentum is

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n) .
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• Here J : so(n) → so(n) is the symmetric pos def operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix sat Λi + Λj > 0 for all i 6= j.

There is a similar formalism for any semisimple Lie group.
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Right Invariant System. The system (RBn) has a right invariant counterpart. This

right invariant system is given as follows:

Q̇r = ΩrQr; Ṁr = [Ωr,Mr] (RightRBn)

where in this case Ωr = Q̇rQ
−1
r and Mr = J(Ωr) where J has the same form as above.

Relating the Left and the Right Rigid Body Systems.

Proposition 1.1. If (Q(t),M(t)) satisfies (RBn) then the pair (Qr(t),Mr(t)), where

Qr(t) = Q(t)T and Mr(t) = −M(t) satisfies (RightRBn). There is a similar converse

statement.
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2 The Symmetric Rigid Body Equations.

The System (SRBn). By definition, the left invariant symmetric rigid body

system (SRBn) is given by the first order equations

Q̇ = QΩ

Ṗ = PΩ (SRBn)

where Ω is regarded as a function of Q and P via the equations

Ω := J−1(M) ∈ so(n) and M := QTP − P TQ.

Proposition 2.1. If (Q,P ) is a solution of (SRBn), then (Q,M) where M = J(Ω) and

Ω = Q−1Q̇ satisfies the rigid body equations (RBn).

Proof. Differentiating M = QTP −P TQ and using the equations (SRBn) gives the second

of the equations (RBn). �
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• Local Equivalence of the Rigid Body and the Symmetric Rigid Body Equa-

tions.

Above saw that solutions of the symmetric rigid body system can be mapped to solutions of

the rigid body system. Now consider the converse question:

Suppose have a solution (Q,M) of the standard left invariant rigid body equations. Sseek

to solve for P in

M = QTP − P TQ. (2.1)

Definition 2.2. Let C denote the set of (Q,P ) that map to M ’s with operator norm

equal to 2 and let S denote the set of (Q,P ) that map to M ’s with operator norm strictly

less than 2. Also denote by SM the set of points (Q,M) ∈ T ∗ SO(n) with ‖M‖op ≤ 2.

Proposition 2.3. For ‖M‖op < 2, the equation(2.1) has the solution

P = Q
(
esinh−1M/2

)
(2.2)
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The System (RightSRBn). By definition, the symmetric representation of the

rigid body equations in right invariant form on SO(n) × SO(n) are given by the

first order equations

Q̇r = ΩrQr; Ṗr = ΩrPr (RightSRBn)

where Ωr := J−1(Mr) ∈ so(n) and where Mr = PrQ
T
r −QrP

T
r .

It is easy to check that that this system is right invariant on SO(n)× SO(n).

Proposition 2.4. If (Qr, Pr) is a solution of (RightSRBn), then (Qr,Mr), where Mr =

J(Ωr) and Ωr = Q̇rQ
−1
r , satisfies the right rigid body equations (RightRBn).
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The Hamiltonian Form of (SRBn).

Recall that the classical rigid body equations are Hamiltonian on T ∗ SO(n) with respect to

the canonical symplectic structure on the cotangent bundle of SO(n).

In symmetric case have:

Proposition 2.5. Consider the Hamiltonian system on the symplectic vector space gl(n)×
gl(n) with the symplectic structure

Ωgl(n)(ξ1, η1, ξ2, η2) =
1

2
trace(ηT2 ξ1 − ηT1 ξ2) (2.3)

and Hamiltonian

H(ξ, η) = −1

8
trace

[(
J−1(ξTη − ηTξ)

) (
ξTη − ηTξ

)]
. (2.4)

The corresponding Hamiltonian system leaves SO(n) × SO(n) invariant and induces on

it, the symmetric rigid body flow.

Note that the above Hamiltonian is equivalent to

H =
1

4

〈
J−1M,M

〉
.
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3 Optimal Control formulation of Rigid Body

Definition 3.1. Let T > 0, Q0, QT ∈ SO(n) be given and fixed. Let the rigid body optimal

control problem be given by

min
U∈so(n)

1

4

∫ T

0

〈U, J(U)〉dt (3.1)

subject to the constraint on U that there be a curve Q(t) ∈ SO(n) such that

Q̇ = QU Q(0) = Q0, Q(T ) = QT . (3.2)

Proposition 3.2. The rigid body optimal control problem (3.1) has optimal evolution

equations (SRBn) where P is the costate vector given by the maximum principle.

The optimal controls in this case are given by

U = J−1(QTP − P TQ). (3.3)

The proof involves writing the Hamiltonian of the maximum principle as

H = 〈P,QU〉 +
1

4
〈U, J(U)〉 . (3.4)
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Merging the Left and Right Problems.

Definition 3.3. Let u(n) denote the Lie algebra of the unitary group U(n).

Let Q be a p × q complex matrix and let U ∈ u(p) and V ∈ u(q). Let JU and JV be

constant symmetric positive definite operators on the space of complex p × p and q × q

matrices respectively and let 〈·, ·〉 denote the trace inner product 〈A,B〉 = 1
2 trace(A†B),

where A† is the adjoint; that is, the transpose conjugate.

Let T > 0, Q0, QT be given and fixed. Define the optimal control problem over u(p)×u(q)

min
U,V

1

4

∫
{〈U, JUU〉 + 〈V, JV V 〉}dt (3.5)

subject to the constraint that there exists a curve Q(t) such that

Q̇ = UQ−QV, Q(0) = Q0, Q(T ) = QT . (3.6)

This problem was motivated by an optimal control problem on adjoint orbits of compact Lie

groups as discussed by Brockett.
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Theorem 3.4. The optimal control problem 3.3 has optimal controls given by

U = J−1
U (PQ† −QP †); V = J−1

V (P †Q−Q†P ) . (3.7)

and the optimal evolution of the states Q and costates P is given by

Q̇ = J−1
U (PQ† −QP †)Q−QJ−1

V (P †Q−Q†P )

Ṗ = J−1
U (PQ† −QP †)P − PJ−1

V (P †Q−Q†P ). (3.8)

Corollary 3.5. The equations (3.8) are given by the coupled double bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]];

˙̂
P = [P̂ , Ĵ−1[P̂ , Q̂]] . (3.9)

where Ĵ is the operator diag(JU , JV ),

Q̂ =

[
0 Q

−Q† 0

]
∈ u(p + q), (3.10)

Q is a complex p× q matrix of full rank, Q† is its adjoint, and similarly for P .
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4 Discrete Variational Problems

This general method is closely related to the development of variational integrators for the

integration of mechanical systems, as in Kane, Marsden, Ortiz and West [2000]. See also

Iserles, McLachlan, and Zanna [1999] and Budd and Iserles [1999].

Key notion: discrete Lagrangian, which is a map Ld : Q × Q → R. The important

point here is that the velocity phase space TQ of Lagrangian mechanics has been replaced by

Q×Q.

In the discrete setting, the action integral of Lagrangian mechanics is replaced by an action

sum

Sd =

N−1∑
k=0

Ld(qk, qk+1) (4.1)

where qk ∈ Q, the sum is over discrete time, and the equations are obtained by a discrete

action principle which minimizes the discrete action given fixed endpoints q0 and qN .
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Taking the extremum over q1, · · · , qN−1 gives the discrete Euler-Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, (4.2)

for k = 1, · · · , N − 1.

We can rewrite this as follows

D2Ld +D1Ld ◦ Φ = 0, (4.3)

where Φ : Q×Q→ Q×Q is defined implicitly by Φ(qk−1, qk) = (qk, qk+1).
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5 Moser–Veselov Discretization

Recall now the Moser–Veselov [1991] discrete rigid body equations. This system will be called

DRBn.

See also Deift, Li and Tomei [1992].

Discretize the configuration matrix and let Qk ∈ SO(n) denote the rigid body configuration

at time k, let Ωk ∈ SO(n) denote the discrete rigid body angular velocity at time k, let I denote

the diagonal moment of inertia matrix, and let Mk denote the rigid body angular momentum

at time k.

These quantities are related by the Moser-Veselov equations

Ωk = QT
kQk−1 (5.1)

Mk = ΩT
kΛ− ΛΩk (5.2)

Mk+1 = ΩkMkΩ
T
k . (5.3)

(DRBn)
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The Moser-Veslov equations (5.1)-(5.3) can in fact be obtained by a discrete variational prin-

ciple (see Moser and Veselov [1991]) of the form described above: one considers the stationary

points of the functional

S =
∑
k

trace(QkIQk+1) (5.4)

on sequences of orthogonal n× n matrices.

See also Marsden, Pekarsky and Shkoller [1999].
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The Discrete Symmetric Rigid Body.

We now define the symmetric discrete rigid body equations as follows:

Qk+1 = QkUk

Pk+1 = PkUk , (SDRBn)

where Uk is defined by

UkΛ− ΛUT
k = QT

kPk − P T
k Qk . (5.5)

Using these equations, we have the algorithm (Qk, Pk) 7→ (Qk+1, Pk+1) defined by: compute

Uk from (5.5), compute Qk+1 and Pk+1 using (SDRBn). We note that the update map for Q

and P is done in parallel here.

Have:

Proposition 5.1. The symmetric discrete rigid body equations (SDRBn) on S are equiv-

alent to the Moser-Veselov equations (5.1)– (5.3) (DRBn) on the set SM where S and

SM are defined in Proposition 2.2.

Note that mk = PkQ
T
k −QkP

T
k then mk = QkMkQ

T
k and is conserved spatial momentum.
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Discrete Optimal Control

Definition 5.2. Let Λ be a positive definite diagonal matrix. Let Q0, QN ∈ SO(n) be

given and fixed. Let

V̂ =

N∑
k=1

trace(ΛUk). (5.6)

Define the optimal control problem

min
Uk

V̂ = min
Uk

N∑
k=1

trace(ΛUk) (5.7)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0, QN = QN (5.8)

for Qk, Uk ∈ SO(n).
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Theorem 5.3. A solution of the optimal control problem (5.2) satisfies the optimal evo-

lution equations (SDRBn)

Qk+1 = QkUk; Pk+1 = PkUk , (5.9)

where Pk is the discrete covector in the discrete maximum principle and Uk is defined by

UkΛ− ΛUT
k = QT

kPk − P T
k Qk . (5.10)



5 Moser–Veselov Discretization 26

The Symmetric Rigid Body Equations with Parameter

• Key observation: can write the generalized rigid body equations as Lax equations with

parameter:
d

dt
(M + λΛ2) = [M + λΛ2,Ω + λΛ], (5.11)

Coefficients of λ in the traces of the powers of M + λΛ2 then yield the right number of

independent integrals in involution to prove integrability of the flow on a generic adjoint orbit

of SO(n) (identified with the corresponding coadjoint orbit).

• Moser and Veselov [1991] show that there is a corresponding formulation of the discrete

rigid body equations with parameter.

Possible in fact also to write the full symmetric rigid body equations with parameter:

Q̇λ = Qλ(Ω + λΛ)

Ṗλ = Pλ(Ω + λΛ). (5.12)
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6 Variational Problems on Stiefel Manifolds

Also give the extremal flows obtained in the limiting cases of the sphere/ellipsoid (n = 1), and

the N dimensional rigid body (n = N). Extremal flows in these cases are well-known and

integrable.

The Stiefel manifold V (n,N) ⊂ RnN consists of orthogonal n frames in N dimensional real

Euclidean space,

V (n,N) = {Q ∈ RnN ; QQT = In}.
Introduce the pairing in Rrs given by

〈A,B〉 = Tr(ATB), (6.1)

where Tr(·) denotes trace of a matrix and the left invariant metric on RnN given by

〈〈W1,W2〉〉 = 〈W1Λ,W2〉 = 〈W1,W2Λ〉, (6.2)

where Λ is a positive definite N ×N diagonal matrix.
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Consider the variational problem given by:

min
Q(·)

∫ T

0

1

2
〈〈Q̇, Q̇〉〉dt (6.3)

subject to: QQT = In, Q ∈ RnN , 1 ≤ n ≤ N , Q(0) = Q0, Q(T ) = QT , In denotes the n× n

identity matrix. This is a variational problem defined on the Stiefel manifold V (n,N). The

dimension of this manifold is given by

Dim V (n,N) = nN − n(n + 1)

2
= n(N − n) +

n(n− 1)

2
.

Or:

min
U(·)

∫ T

0

1

2
〈〈QU,QU〉〉dt (6.4)

subject to: Q̇ = QU ; QQT = In, Q(0) = Q0, Q(T ) = QT where U ∈ so(N). Note that the

quantity to be minimized is invariant with respect to the left action of SO(n) on V (n,N) since

the metric (6.2) is left invariant.
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The Rigid Body equations

For the special case when n = N , V (N,N) ≡ SO(N) and the extremal trajectories of the

optimal control problem (6.4) give the N -dimensional rigid body equations.

Geodesic flow on the ellipsoid

For the other extreme case, when n = 1, we obtain the equations for the geodesic flow on the

sphere V (1, N) ≡ SN−1 with Q = qT, qTq = 1. This can be also be regarded as the geodesic

flow on the ellipsoid

q̄TΛ−1q̄ = 1,

where q = Λ−1/2q̄. The costate variable P = pT is used to enforce the constraint q̇ = −Uq for

the (6.4) when n = 1. The extremal solutions to this problem are

q̇ = −Uq, ṗ = −Up + Aq, (6.5)

where A = qqTUΛU − UΛUqqT.
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The body momentum is obtained as

M = qpT − pqT, (6.6)

in terms of the solution (q, p). Equations (6.5) can then be expressed in terms of the body

momentum as

q̇ = −Uq, Ṁ = [M,U ]− A. (6.7)

The Lagrangian (variational) formulation for this problem gives us the equations for the

geodesic flow on the sphere. To obtain these equations, we take reduced variations on V (1, N) =

SN−1.

We get the Lagrangian (variational) equations for the geodesic flow on the sphere (SN−1) as

q̈ = − q̇Tq̇

qTΛ−1q
Λ−1q. (6.8)

Integrability of these extremal flows were proven by Jacobi with relation to Neumann problem

of motion on sphere with quadratic potential, as shown by Knorrer (1982). Contemporary

version of integrability of the geodesic flow on an ellipsoid was demonstrated by Moser (1980)

using Theorem of Chasles and geometry of quadrics.

Obtain a symmetric form and discretization.
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7 Quadratic Matrix Lie Groups

We consider quadratic matrix groups of the form

G :=
{
g ∈ Rn×n | gTJg = J

}
, (7.1)

where gT is the transpose of the n× n matrix g, J2 = αIn and JT = αJ for α = ±1.

This class of groups includes standard classical groups of interest including the symplectic

group and O(p, q).

This class of matrix groups gives matrix representations of linear transformations on Rn that

leave the following symmetric, bilinear form invariant:

f (x, y) = xTJy, x, y ∈ Rn.

Observation The Lie algebra of the group G is given by

g =
{
X ∈ Rn×n | XTJ + JX = 0

}
.

If g ∈ G then gT ∈ G and g − g−1 ∈ g.
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Let Σ : g → g be a fixed symmetric positive definite operator with respect to the inner

product given by (6.1). Consider the optimal control problem on G given by

min

∫ T

0

1

4
〈U,Σ(U)〉dt (7.2)

subject to Q̇ = QU where U ∈ g, and where the minimum is taken over all curves Q(t) ∈ G

with t ∈ [0, T ] and with fixed endpoints Q(0) = Q0 and Q(T ) = QT .

The Hamiltonian for the optimal control problem (7.2) is then defined as

H(P,Q, U) = 〈P,QU〉 − 1

4
〈U,Σ(U)〉

= 〈QTP,U〉 − 1

4
〈U,Σ(U)〉. (7.3)
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Proposition 7.1. The necessary conditions for optimality of a solution to the optimal

control problem (7.2) with costate P ∈ Rn×n yield the following Hamilton’s equations

Q̇ = QU, Ṗ = −PUT. (7.4)

Lemma 7.2. The extremal controls for the optimal control problem (7.2) when P ∈ G

are given by

Uext = Σ−1
(
QTP − (QTP )−1

)
. (7.5)
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The space Rn×n × Rn×n is a symplectic manifold with the canonical symplectic form

Ωcan((X1, Y1), (X2, Y2)) = 〈Y2, X1〉 − 〈Y1, X2〉. (7.6)

Proposition 7.3. The extremal flow (7.4) generated by the optimal control problem (7.2)

which evolves on the canonical symplectic manifold (Rn×n × Rn×n,Ωcan) as a Hamiltonian

flow, naturally restricts to a flow on G×G.

Let M = QTP − (QTP )−1, then M ∈ g if P ∈ G in which case

H(P,Q, Uext) =
1

4
〈M,Σ−1(M)〉, (7.7)

and the extremal control can be expressed as

Uext = Σ−1(M) ∈ g. (7.8)
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Extremal flow in terms of an involution Consider the Lie algebra automorphism of

g and gl(n), given by

σ̂ : g → g; σ̂(A) = −AT. (7.9)

Can show:

Theorem 7.4. The ”generalized Euler” equations for the optimal control problem (7.2)

are given by

Q̇ = QU, Ṁ = [M, σ̂(U)], U = Σ−1(M). (7.10)

To pass between the two formulations we consider the map

Φ : G×G→ G× g, (Q,P ) 7→ (Q,M) (7.11)

where M = σ(Q−1)P − P−1σ(Q).

The inverse of the map Φ, where defined, is obtained simply by setting

P = σ(Q) exp

(
sinh−1 M

2

)
, (7.12)
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Note that sinh(·) does indeed restrict to a map from g to g since if X ∈ g, exp(X) ∈ G, and

hence exp(X)− exp(−X) ∈ g by our earlier observation.

Can show:

Theorem 7.5. The set S ⊂ G×G ⊂ Rn×n × Rn×n given by

S ,
{
(Q,P ) ∈ G×G | m = Pσ(Q−1)− σ(Q)P−1, ‖m‖ < 2

}
, (7.13)

is a symplectic submanifold of Rn×n × Rn×n.
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Discrete Optimal Control Problem

Let the matrix Λ satisfing ΛTJ = JΛ, be such that Λ + ΛT is positive definite. Let Q0,

QN ∈ G be given fixed endpoints. We define the optimal control problem

min
Uk

N∑
k=1

〈∆, Uk〉, ∆ =
1

2
(Λ + ΛT), (7.14)

subject to

Qk+1 = QkUk, Q0 = Q0, QN = QN . (7.15)

Therefore Uk = Q−1
k Qk+1 ∈ G, and ∆ is positive definite satisfying the condition ∆TJ =

∆J = J∆.

Theorem 7.6. A solution of the discrete optimal control problem (7.14) is given by a

sequence of matrices (Qk, Pk) in G×G satisfying the optimal evolution equations

Qk+1 = QkUk, Pk+1 = Pkσ(Uk), (7.16)

where σ : GL(n) → GL(n) is the involution defined above, and Uk is defined by

Uk∆−∆U−1
k = PT

k Qk −
(
PT
k Qk

)−1
. (7.17)
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8 Fluid Flows and Optimal Control

First introduce the usual dynamics for inviscid, incompressible fluid flow, impulse density and

the vorticity dynamics. The basic equations we consider are:

∂v

∂t
+ (v · grad)v = − grad p; div v = 0 (8.1)

x ∈ Ω; v = v(x, t), p = p(x, t).

We assume, for simplicty only that the flow is in all of space or in a periodic box so we do not

need to deal with boundary conditions. This is not an essential restriction.

Here, v is the fluid velocity and p is the pressure. We introduce the impulse density z,

z = v + grad k. (8.2)

where k is an arbitrary scalar field, k = k(x, t).
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Take the time derivative of (8.2) to get

∂z

∂t
− v × curl z = grad Λ, div v = 0 (8.3)

where

Λ =
∂k

∂t
− p− 1

2
v · v;

Λ is called the gauge. Any choice of gauge is possible, but to be concrete, we consider the

“geometric gauge” Λ = −v · z.
With this choice

∂z

∂t
+ (v · grad)z + (grad v)Tz = 0, div v = 0

and k is now fixed by the equation

dk

dt
= p− 1

2
v · v.
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Lemma 8.1. w = curl z = curl v satisfies the vorticity equation:

∂w

∂t
+ [v, w] = 0 (8.4)

We denote the Lagrange or material variables by Xi and the Euler or spatial variables by xi,

and set

xi = φi(X, t), 1 ≤ i ≤ 3.

We assume φ : Ω → Ω is a volume preserving diffeomorphism, with Jacobian equal to unity,

|φ∗| = 1.

Total vorticity equations:

∂φ

∂t
= v ◦ φ;

∂w

∂t
= [w, v] : div v = 0. (8.5)

Compare these equations with the right invariant Euler equations for the rigid body:

Q̇ = ΩQ; Ṁ = [Ω,M ] (8.6)

[Ω,M ] = ΩM −MΩ

(
= [M,Ω] interpreted

as vector fields

)
.
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Optimal Control formulation The problem can be posed as:

min
v(·)

1

2

∫ T

0

〈v, v〉dt

subject to:

div v = 0;
∂φ

∂t
= v ◦ φ (8.7)

and

φ(X, 0) = φ0(X), φ(X,T ) = φT (X) fixed,

and, for flow in all of space, suitable conditions at infinity.

Goal here is to analyze Hamilton principle for fluid mechanics from the point of view of the

Pontryagin maximum principle.

Thus solve this problem by introducing Lagrange multipliers and the cost

J(v, φ, π, k) =

∫ T

0

(〈
π, v ◦ φ− ∂φ

∂t

〉
− 1

2
〈v, v〉 + 〈k, div v〉

)
dt

The problem (8.7) may be recast as: min J , subject to div v = 0, ∂φ
∂t = v ◦ φ, and boundary

conditions.
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Theorem 8.2. The extremals of problem (8.7) are given by

∂π

∂t
=− (v∗ ◦ φ)Tπ,

∂φ

∂t
= v ◦ φ (8.8)

v =π ◦ φ−1 − grad k, div v = 0.

Now set

H(π, φ) =
1

2
〈curl π ◦ φ−1, ψ〉

=
1

2
〈π ◦ φ−1, v〉

=
1

2
〈ω,Aω〉

=
1

2
〈curl π ◦ φ−1, A curlπ ◦ φ−1〉. (8.9)

Theorem 8.3. For this Hamiltonian

δH

δπ
(π, φ) = v ◦ φ;

∂H

∂φ
(π, φ) = (v∗ ◦ φ)Tπ.
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Thus the extremal equations (8.8) may be written as

∂π

∂t
= −δH

δφ
;

∂φ

∂t
=
δH

δπ
. (8.10)

These equations are canonical with respect to the natural symplectic form on L2(R3 : R3) ×
L2(R3 : R3)

ω((X1, Y1), (X2, Y2)) =

∫
R3

(Y2 ·X1 −X2 · Y1)dx
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9 Flows on Symmetric Matrices and the Symplectic Group

Consider here analysis of the set of ordinary differential equations

Ẋ = [X2, N ], (9.1)

whereX ∈ Sym(n), the linear space of n×n symmetric matrices, Ẋ denotes the time derivative,

N ∈ so(n), the space of skew symmetric n× n matrices, is given, and where initial conditions

X(0) = X0 ∈ Sym(n) are also given.

It is easy to check that [X2, N ] ∈ Sym(n), so that if the initial condition is in Sym(n), then

X(t) ∈ Sym(n) for all t.

Also, because of the straightforward identity
[
X2, N

]
= [X,XN +NX ], this equation may

be rewritten in the Lax form

Ẋ = [X,XN +NX ], (9.2)

again with initial conditions X(0) = X0 ∈ Sym(n).
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10 The Lie Algebra

Can regard N as a Poisson tensor on Rn by defining the bracket of two functions f, g as

{f, g}N = (∇f )TN∇g. (10.1)

The Hamiltonian vector field associated with a function h is given by

.Xh(z) = N∇h(z), (10.2)

For each X ∈ Sym(n) define the quadratic Hamiltonian QX by

QX(z) :=
1

2
zTXz, z ∈ Rn.

Let Q := {QX | X ∈ Sym(n)} be the vector space of all such functions.

Follows that the Hamiltonian vector field of QX has the form

XQX
(z) = NXz. (10.3)
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Poisson bracket:

Lemma 10.1. For X, Y ∈ Sym(n), we have

{QX , QY }N = Q[X,Y ]N , (10.4)

where [X, Y ]N = XNY − Y NX ∈ Sym(n). In addition, Sym(n) is a Lie algebra relative

to the Lie bracket [·, ·]N . Therefore, Q : X ∈ (Sym(n), [·, ·]N) 7→ QX ∈ (Q, {·, ·}N) is a Lie

algebra isomorphism.

Know:

[Xf , Xg] = −X{f,g}. (10.5)

If we take f = QX and g = QY , with Xf = NX and Xg = NY , and recall that the Jacobi-Lie

bracket of linear vector fields is the negative of the commutator of the associated matrices,

then we have

Proposition 10.2. Equations (10.4) and (10.5) imply

N [X, Y ]N = [NX,NY ] . (10.6)
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Letting LH denote the Lie algebra of linear Hamiltonian vector fields on Rn relative to the

commutator bracket of matrices, (10.6) states that the map

X ∈ (Sym(n), [·, ·]N) 7→ NX ∈ (LH, [·, ·])

is a homomorphism of Lie algebras.

Have:

Proposition 10.3. Let N ∈ so(n). The map Q : X ∈ (Sym(n), [·, ·]N) 7→ QX ∈
(Q, {·, ·}N) is a Lie algebra isomorphism. The map X ∈ (Sym(n), [·, ·]N) 7→ NX ∈
(LH, [·, ·]) is a Lie algebra homomorphism and if N is invertible it induces an isomor-

phism of (Sym(n), [·, ·]N) with sp(n,R).



10 The Lie Algebra 48

Euler-Poincaré Form

Identify Sym(n) with its dual using the the positive definite inner product

〈〈X, Y 〉〉 := trace (XY ) , for X, Y ∈ Sym(n). (10.7)

Remark. The inner product 〈〈X, Y 〉〉 is not ad invariant relative to theN -bracket, but another

one, namely κN(X, Y ) := trace(NXNY ) is invariant, as is easy to check.

Define the Lagrangian l : Sym(n) → R on the Lie algebra (Sym(n), [·, ·]N) by

l(X) =
1

2
trace

(
X2

)
=

1

2
trace

(
XXT

)
=:

1

2
〈〈X,X〉〉 . (10.8)

Proposition 10.4. The equations

Ẋ = [X2, N ] (10.9)

are the Euler-Poincaré equations corresponding to the Lagrangian (10.8) on the Lie algebra

(Sym(n), [·, ·]N).
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Noninvertible case Let 2p = rankN and d := n − 2p. Then N̄ := N |imN : imN →
imN defines a nondegenerate skew symmetric bilinear form and, by the previous proposition,

(Sym(2p), [·, ·]N̄) is isomorphic as a Lie algebra to (sp(R2p, N̄−1), [·, ·]).

Proposition 10.5. Can find a map

Ψ : ((Sym(2p) sM(2p)×d)⊕ Sym(d), [·, ·]C) → (Sym(n), [·, ·]N)

given by

Ψ(S,A,B) :=

[
S A

AT B

]
(10.10)

which is a Lie algebra isomorphism.
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Poisson structure

Identifying Sym(n) with its dual using the inner product (10.7) endows Sym(n) with the the

(left, or minus) Lie Poisson bracket

{f, g}N (X) = − trace
[
X

(
∇f (X)N∇g(X)−∇g(X)N∇f (X)

)]
, (10.11)

where ∇f is the gradient of f relative to the inner product 〈〈·, ·〉〉 on Sym(n). It is easy to

check that the equations Ẋ =
[
X2, N

]
are Hamiltonian relative to the function l defined in

(10.8) and the Lie-Poisson bracket (10.11).

Later on we shall also need the frozen Poisson bracket

{f, g}FN (X) = − trace
(
∇f (X)N∇g(X)−∇g(X)N∇f (X)

)
. (10.12)

It is a general fact that the Poisson structures (10.11) and (10.12) are compatible in the sense

that their sum is a Poisson structure.
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Proposition 10.6. Let n = 2p + d, where 2p = rankN . The generic leaves of the Lie-

Poisson bracket {·, ·}N are 2p(p + d)-dimensional.

Proposition 10.7. All leaves of the frozen Poisson bracket {·, ·}FN are

(i) 2p(p+d)-dimensional if N is generic, that is, all its non-zero eigenvalues are distinct,

and

(ii) p(p + 1 + 2d)-dimensional if all non-zero eigenvalue pairs of N are equal.
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Proposition 10.8. Denote the value at X ∈ Sym(n) of the Poisson tensors corresponding

to the Lie-Poisson (10.11) and frozen (10.12) brackets by BX and CX, respectively. Then

for any Y ∈ Sym(n) we have

BX(Y ) = XYN −NYX (10.13)

CX(Y ) = Y N −NY. (10.14)
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Casimir Functions.

Proposition 10.9. Let the skew symmetric matrix N have rank 2p and size n := 2p+ d.

Choose an orthonormal basis of R2p+d in which N is written as

N =

 0 V 0

−V 0 0

0 0 0

 ,
where V is a real diagonal matrix whose entries are v1, . . . , vp.

(i) If vi 6= vj for all i 6= j, the p + d(d + 1)/2 Casimir functions for the frozen Poisson

structure are given by

C i
F (X) = trace(EiX), i = 1, . . . , p +

1

2
d(d + 1),

where Ei is any of the matricesSkk 0 0

0 Skk 0

0 0 0

 ,
0 0 0

0 0 0

0 0 Sab

 .



10 The Lie Algebra 54

Here Skk is the p × p matrix all of whose entries are zero except the diagonal (k, k)

entry which is one and Sab is the d× d symmetric matrix having all entries equal to

zero except for the (a, b) and (b, a) entries that are equal to one.

(ii) If vi = vj for all i, j = 1, . . . , p, the p2 + d(d + 1)/2 Casimir functions for the frozen

Poisson structure are given by

C i
F (X) = trace(EiX), i = 1, . . . , p2 +

1

2
d(d + 1),

where Ei is any of the matricesSkl 0 0

0 Skl 0

0 0 0

 ,
 0 Akl 0

−Akl 0 0

0 0 0

 ,
0 0 0

0 0 0

0 0 Sab

 .
Here Skl is the p× p symmetric matrix having all entries equal to zero except for the

(k, l) and (l, k) entries that are equal to one and Akl is the p × p skew symmteric

matrix with all entries equal to zero except for the (k, l) entry which is 1 and the (l, k)

entry which is −1.
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(iii) Denote

N̄ =

[
0 V

−V 0

]
and N̂ =

[
N̄−1 0

0 0

]
.

The p+ d(d+ 1)/2 Casimir functions for the Lie-Poisson bracket {·, ·}N are given by

Ck(X) =
1

2k
trace

[(
XN̂

)2k
]
, for k = 1, . . . , p

and

Ck(X) = trace(XEk), for k = p + 1, . . . , p +
1

2
d(d + 1) ,

where Ek is any matrix of the form 0 0 0

0 0 0

0 0 Sab

 .
In the special case when N is full rank the Casimirs are just

Ck(X) =
1

2k
trace

[(
XN−1

)2k
]
, for k = 1, . . . , p,
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Mischenko-Fomenko

Can show that our equation is not of the sectional operator type. However the system may

be mapped to a Mischenko-Fomenko type system in the case N is invertible with distinct

eigenvalues.

The Mischenko-Fomenko Construction. Consider a semisimple complex or real split

Lie algebra g with Killing form 〈·, ·〉. Let h be a Cartan subalgebra, let a, b ∈ h and a be regular

(i.e. its value on every root is non-zero). Define the sectional operators Ca,b,D : g → g

by Ca,b,D(ξ) := ad−1
a adb(ξ1) + D(ξ2) where ξ = ξ1 + ξ2, ξ2 ∈ h, ξ1 ∈ h⊥ (the perpendicular

is taken relative to the Killing form and thus h⊥ is the direct sum of all the root spaces), and

D : h → h is an arbitrary invertible symmetric operator on h. Then Ca,b,D : g → g is an

invertible symmetric operator (relative to the Killing form) satisfying the condition

[Ca,b,D(ξ), a] = [ξ, b] (10.15)

for all ξ ∈ g.
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The equations of motion are

ξ̇ = [ξ, Ca,b,D(ξ)]. (10.16)

For N invertible we can show can map the system to one of MF type:

Ż = [Z,NZN ] (10.17)
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11 Lax Pairs with Parameter

To prove that system (9.1) is integrable for any choice of N , we will compute its flow invariants.

Due to isospectral representation (9.2), we already know that the eigenvalues of X , or alter-

natively, the quantities traceXk for k = 1, 2, . . . , n− 1, are invariants.

Rewrite the system as a Lax pair with a parameter. One can do this in a fashion similar to

that for the generalized rigid body equations.

Theorem 11.1. Let λ be a real parameter. The system (9.2) is equivalent to the following

Lax pair system
d

dt
(X + λN) =

[
X + λN,NX +XN + λN 2

]
(11.1)

Recall Manakov:

d

dt
(M + λΛ2) = [M + λΛ2,Ω + λΛ]. (11.2)
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For the generalized rigid body the nontrivial coefficients of λi, 0 < i < k in the traces of the

powers of M +λΛ2 then yield the right number of independent integrals in involution to prove

integrability of the flow on a generic adjoint orbit of SO(n) (identified with the corresponding

coadjoint orbit). The case i = 0 needs to be eliminated, because these are Casimir functions.

Similarly, in our case, the nontrivial coefficients of λi, 0 ≤ i ≤ k, in

hλk(X) :=
1

k
trace(X + λN)k, k = 1, 2, . . . , n− 1 (11.3)

yield the conserved quantities.
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We find the nontrivial invariants

trace
∑

|i|=k−2r

∑
|j|=2r

X i1N j1X i2 · · ·X isN js (11.4)

for iq, jq = 0, . . . , k − 1, r = 1, . . . ,
[
k−1

2

]
, where [p] denotes the integer part of p ∈ R.

Altogether, this results in [
n

2

] [
n + 1

2

]
invariants as an easy inductive argument shows.
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Are these integrals the right candidates to prove complete integrability of the system Ẋ =

[X2, N ]?

• If N is invertible, then n = 2p and hence[
n

2

] [
n + 1

2

]
=

[
2p

2

] [
2p + 1

2

]
= p2 =

1

2

(
2p2 + p− p

)
=

1

2
(dim sp(2p,R)− rank sp(2p,R))

which is half the dimension of the generic adjoint orbit in sp(2p,R). Therefore, these

conserved quantities are the right candidates to prove that this system is integrable on the

generic coadjoint orbit of Sym(n).
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• If N is non-invertible (which is equivalent to d 6= 0), then n = 2p + d and hence[
n

2

] [
n + 1

2

]
=

[
2p + d

2

] [
2p + d + 1

2

]
=

(
p +

[
d

2

]) (
p +

[
d + 1

2

])
= p2 + p

([
d

2

]
+

[
d + 1

2

])
+

[
d

2

] [
d + 1

2

]
= p2 + pd +

[
d

2

] [
d + 1

2

]
.

The right number of integrals is p(p+ d) according to Proposition 10.6, so this calculation

seems to indicate that there are additional integrals. The situation is not so simple since

there are redundancies due to the degeneracy of N . Note, however, that if d = 1, then we

do get the right number of integrals.
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12 Integrability

This section shows that the Hamiltonian system (9.1) is integrable in the case n = 2p.

Bihamiltonian structure. We begin with the following observation.

Proposition 12.1. The system Ẋ = X2N − NX2 is Hamiltonian with respect to the

bracket {f, g}N defined in (10.11) using the Hamiltonian h2(X) := 1
2 trace(X2) and is also

Hamiltonian with respect to the compatible bracket {f, g}FN defined in (10.12) using the

Hamiltonian h3(X) := 1
3 trace(X3).

Involution. We prove that the
[
n
2

] [
n+1

2

]
integrals given in (11.4), namely

hk,2r(X) := trace
∑

|i|=k−2r

∑
|j|=2r

X i1N j1X i2 · · ·X isN js,

where iq, jq = 0, . . . , k − 1, r = 1, . . . ,
[
k−1

2

]
, k = 1, . . . , n − 1, are in involution. Denote by

hk,k−r the coefficient of λk−r in 1
k trace (X + λN)k so that we have

hλk(X) =
1

k
trace (X + λN)k =

k∑
r=0

λk−rhk,k−r(X) . (12.1)
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As explained before, not all of these coefficients should be counted: roughly half of them vanish

and the last one, namely, hk,k, is the constant Nk. Consistent with our notation for the

Hamiltonians, we set hk = hk,0.

Firstly we need the gradients of the functions hλk.

Lemma 12.2. The gradients ∇hλk are given by

∇hλk(X) =
1

2
(X + λN)k−1 +

1

2
(X − λN)k−1. (12.2)

Proposition 12.3.

BX(∇hλk(X)) = CX(∇hλk+1(X)) (12.3)

Proposition 12.4. The functions hk,k−r satisfy the recursion relation

BX(∇hk,k−r(X)) = CX(∇hk+1,k−r(X)) (12.4)



12 Integrability 65

Uising the recursion relations involution follows immediately.

Proposition 12.5. The invariants hk,k−r are in involution with respect to both Poisson

brackets {f, g}N and {f, g}FN .

Proof. The definition of the Poisson tensors BX and CX and the recursion relation (12.4) give

{hk,k−r, hl,l−q}N = 〈〈∇hk,k−r(X), BX(∇hl+1,l−q(X))〉〉
= 〈〈∇hk,k−r(X), CX(∇hl+1,l−q(X))〉〉
= {hk,k−r, hl+1,l−q}FN = −{hl+1,l−q, hk,k−r}FN
= −〈〈∇hl+1,l−q(X), CX(∇hk,k−r(X))〉〉
= −〈〈∇hl+1,l−q(X), BX(∇hk−1,k−r(X))〉〉
= −{hl+1,l−q, hk−1,k−r}N = {hk−1,k−r, hl+1,l−q}N

for any k, l = 1, . . . , n− 1, r = 1, . . . , k and q = 0, . . . , l − 1.

Repeated application of this relation eventually leads to Hamiltonians hk,k−r where either

k − r is a power that does not exist for k, in which case the Hamiltonian is zero, or one is led

to h0,0 which is constant. This shows that {hk,k−r, hl,l−q}N = 0 for any pair of indices.

In a similar way one shows that {hk,k−r, hl,l−q}FN = 0. �
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Independence

Theorem 12.6. For generic N the integrals hk,2r given by equation (11.4) are indepen-

dent.

Hence, since we have involution and independence we have proved the following.

Theorem 12.7. For N invertible with distinct eigenvalues the system (9.1) is completely

integrable.

Corollary 12.8. For N odd with distinct eigenvalues and nullity one, the system (9.1)

is completely integrable.

It is also of interest to analyze linearization on the Jacobi variety of the curve

det(zI − λN −X) = 0

– use work of Adler/van Moerbeke. Griffiths.


	The n-dimensional Rigid Body.
	The Symmetric Rigid Body Equations.
	Optimal Control formulation of Rigid Body
	Discrete Variational Problems
	Moser--Veselov Discretization
	Variational Problems on Stiefel Manifolds
	Quadratic Matrix Lie Groups
	Fluid Flows and Optimal Control
	Flows on Symmetric Matrices and the Symplectic Group
	The Lie Algebra
	Lax Pairs with Parameter
	Integrability

