
CDS 202 Final Examination Solutions
François Gay-Balmaz, March, 2010

Attempt four of the following six questions.

The exam time limit is three hours; no aids are permitted.

The exam has two sheets printed on both sides

Print Your Name: ←Note!

The 4 questions to be graded: ←Note!

You may freely use the following properties as needed. Here α and β are
differential forms and X,Y, Z are vector fields on a manifold M . (In the exam, all
manifolds, vector fields, and differential forms are assumed to be smooth and the
manifolds are finite dimensional.)

(a) £X(α ∧ β) = (£Xα) ∧ β + α ∧ (£Xβ)

(b) £[X,Y ]α = £X£Y α−£Y£Xα

(c) iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ), where α is a k-form.

(d) £Xα = diXα+ iXdα

(e) i[X,Y ]β = £X iY β − iY£Xβ

(f) For γ a one-form,

dγ(X,Y ) = X[γ(Y )]− Y [γ(X)]− γ([X,Y ])

(g) For ω a two-form,

dω(X,Y, Z) = X[ω(Y, Z)]− Y [ω(X,Z)] + Z[ω(X,Y )]

− ω([X,Y ], Z)− ω([Z,X], Y )− ω([Y,Z], X)

(h) For a one form α and a vector field X,

(£Xα)i = Xj ∂αi
∂xj

+ αj
∂Xj

∂xi



1. Consider the following vector fields X,Y , the one form α and the three form
µ on R3:

X = −y ∂
∂x

+ x
∂

∂y
+ z

∂

∂z

Y = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

α = y dx− x dy + z dz

µ = dx ∧ dy ∧ dz

(a) Compute the exterior derivative dα and the interior product iXα.

(b) Compute the Lie derivative £Xα

(c) Describe the flows Ft of X and Gt of Y geometrically.

(d) Compute
d

dt

∣∣∣∣
t=0

F ∗
t µ and

d

dt

∣∣∣∣
t=0

G∗
tα

(e) Compute d
dt

∣∣
t=0

F ∗
t Y .

Solution (a) The following calculations are straightforward using the
given expressions for α and X in coordinates.

dα = −2 dx ∧ dy

iXα = z2 − x2 − y2

Solution (b) Using Cartan’s formula,

£Xα = d(iXα) + iX(dα)

From the solution in (a),

£Xα = d(z2 − x2 − y2) + iX(−2 dx ∧ dy)

Distributing the inner product and differential gives,

£Xα = 2zdz − 2xdx− 2ydy − 2 iX(dx) ∧ dy + 2 dx ∧ iX(dy)

= 2zdz − 2xdx− 2ydy + 2ydy − 2xdx

= d(z2)



Solution (c) The flow of Ft is a rotation in the x-y plane and expo-
nential enlargement in z. In fact, given an initial (x0, y0, z0) 6= 0 the
curve (Ft)∗(x0, y0, z0) for t ∈ [0, T ] describes an exponentially expanding
helix around the z-axis. The flow of Gt is a simple expansion of an initial
(x0, y0, z0) 6= 0, i.e., (Gt)∗(x0, y0, z0) = et(x0, y0, z0).

Solution (d) Using the dynamical definition of the Lie-derivative and
divµX = 1

d

dt

∣∣∣∣
t=0

F ∗
t µ = £Xµ = (divµX)µ = µ

Similarly, using the dynamical definition of the Lie-derivative and Cartan’s
magic formula one obtains,

d

dt

∣∣∣∣
t=0

G∗
tα = £Y α = d(iY α) + iY dα = 2ydx− 2xdy + 2zdz

Solution (e) Using the dynamical definition of the Lie-derivative,

d

dt

∣∣∣∣
t=0

F ∗
t Y = £XY = 0

This result implies that Ft and Gt commute.

2. Let M be the ellipsoidal shell in R3 given by x2 + 4y2 + z2 = 1 and let S
be the partial ellipsoidal shell in R3 defined by the conditions (x, y, z) ∈M
and 0 ≤ x ≤ 1/2 .

(a) Show that M is a smooth manifold.

(b) Argue informally that S is a smooth oriented manifold with boundary;
describe a specific choice of orientation.

(c) Let the one form α be defined on the open set U = R3\x-axis by

α =
zdy − ydz
y2 + z2

Compute dα.

(d) Let β be the pull-back of α to S. Is β closed? Is β exact?

(e) Compute the integral of β over ∂S.



Solution (a) The submersion theorem is used to demonstrate M is a
smooth manifold. Consider the map ϕ : R3 → R given by:

ϕ(x, y, z) = x2 + 4y2 + z2

Note that M = ϕ−1(1). If 1 is a regular value of ϕ, then by the submersion
theorem M is a manifold. To show that 1 is a regular value, its tangent map
restricted to M is shown to be surjective, i.e., for every C ∈ R there exists
a B ∈ R3 given in components by B = (B1, B2, B3) such that

Tϕ|M · (B1, B2, B3) = 2xB1 + 8yB2 + 2zB3 = C

This B is given by B = C/2(x, y, z).

Solution (b) It is easy to show that the cylindrical shell is a manifold.
Consider the diffeomorphism between the truncated ellipsoidal shell and the
cylindrical shell given by,

(x, y, z) 7→ (x, 2y, z)

This map sends the points

{(x, y, z) ∈ R3 : x2 + 4y2 + z2 = 1, 0 ≤ x ≤ 1/2}

to the points

{(u, v, w) ∈ R3 : u2 + v2 + w2 = 1, 0 ≤ u ≤ 1/2}

where u = x, v = 2y, w = z. The orientation in the interior is given by
choosing an outward or inward pointing normal at every point. On the
boundary ellipses (at x = 0 or x = 1/2) the orientation of the tangent space
(tangents pointing in the clockwise or counterclockwise sense) is determined
by the orientation in the interior. Specifically, one picks an outward pointing
vector to the boundary to be the first vector of the oriented basis, and the
next vector is found by ensuring that the right-hand rule gives an outward
pointing normal as in the interior.

Solution (c) A direct calculations shows that dα = 0, and hence, α is
closed.



Solution (d) Let i : S → R3 be the inclusion map. Then β = i∗α, and
since i is smooth then dβ = di∗α = i∗dα = 0. Thus, β is closed.

However, β is not exact. One can prove this by contradiction as follows.
Suppose β = dγ and consider the following integral over the ellipse C =
{(y, z) : 4y2 + z2 = 1}:∫

C
β =

∫ 2π

0

−2dθ

cos2(θ) + 4 sin2(θ)
6= 0

since the integrand is strictly negative. However, by Stokes’ theorem∫
C
β =

∫
C
dγ = 0

since ∂C = ∅.

Solution (e) By Stokes’ theorem∫
∂S
β =

∫
S
dβ = 0

since β is closed.

3. Let S be the 3 × 3 diagonal matrix with diagonal entries 1, 1,−2. Let G
denote the set of 3 × 3 real matrices A that satisfy ATSA = S, where AT

denotes the transpose of A.

(a) Show that, with the operation of matrix multiplication, G is a Lie
group.

(b) What is its dimension? Is G compact?

(c) Show that the Lie algebra g of G may be identified with the set of 3×3
matrices ξ that satisfy ξTS+Sξ = 0. What is the Lie algebra bracket?

(d) If α is a nonzero real number, show that the matrix

ξ =

 0 α 0
−α 0 0
0 0 0


lies in the Lie algebra g. What is the one parameter subgroup of G
that is tangent to ξ at t = 0?

(e) Let η, ξ ∈ g be two matrices in g from part (c) that commute. Let D be
the distribution on G obtained by left translating the two dimensional
vector space V = span(η, ξ) around the group. Is D integrable?



Solution (a) First check the axioms of a group:

• Closure: Given A,B ∈ G, observe their product is in G, i.e.,

(AB)TSAB = BT (ATSA)B = BTSB = S

• Associativity: This property follows from the fact that matrix multi-
plication is associative.

• Identity: The identity matrix denoted by e is in G since,

eTSe = eS = S

• Inverse: The inverse of any A ∈ G is also in G, since A is invertible

ATSA = S =⇒ det(A)2 = 1 =⇒ A ∈ GL(3)

and
ATSA = S =⇒ (AT )−1SA−1 = (A−1)TSA−1 = S

G is shown to be a subgroup of GL(3) by considering the properties of the
map ϕ : GL(3)→ {symmetric 3× 3 matrices} given by:

ϕ(A) = ATSA

Note that ϕ−1(S) = G. The claim is that S is a regular value of ϕ, and
hence, G is a submanifold of GL(3) by the submersion theorem. Consider

Dϕ(A) ·B = BTSA+ATSB

where Dϕ(A) : L(R3,R3) → {symmetric 3× 3 matrices}. For any C ∈
{symmetric 3× 3 matrices} there is a B such that

Dϕ(A) ·B = C

given by
B = 1/2AS−1C.

The group operation is smooth since matrix multiplication is a smooth bi-
linear map on GL(3), and hence, its restriction to the subgroup G is also
smooth. Hence, G is a Lie subgroup of G.



Solution (b) The dimension of G is given by the submersion theorem as

dimG = dimGL(3)− dim{symmetric 3× 3 matrices} = 3

Moreover, G is the preimage of the closed set S under the continuous map
ϕ. Hence, G is closed. However, G is not compact since it is not bounded.
For example, for any t ∈ R consider the following A ∈ G

A =

1 0 0

0 t
√

2(t2 − 1)

0
√

(t2 − 1)/2 t


whose matrix norm is given by:

‖A‖ =
3

2
(−1 + 3t2)

which cannot be bounded for all t.

Solution (c) From the submersion theorem TeG ∼ g is the set of matrices
in the kernal of Dϕ(e), i.e., ξ ∈ L(R3,R3) such that

Dϕ(e) · ξ = ξTS + Sξ = 0

Since G is a Lie subgroup of GL(3), the bracket is the matrix commutator
restricted to g.

Solution (d) ξ ∈ g since ξT = −ξ and

ξTS + Sξ = −ξ + ξ = 0

The one-parameter subgroup of G generated by ξ is SO(2) and given by:

exp(tξ) =

 cos(αt) sin(αt) 0
− sin(αt) cos(αt) 0

0 0 1


and corresponds to rotations about the z-axis.



Solution (e) If η, ξ ∈ g commute then the bracket of their associated
left-invariant vector fields is zero, i.e.,

ηξ = ξη =⇒ £XξXη = X[ξ,η] = 0

Hence the distribution defined by left translating the vector space spanned
by ξ and η is involutive and by Frobenius’ theorem integrable.

4. (a) Let X and Y be the vector fields on R3 defined by

X = y
∂

∂z
− z ∂

∂y
and Y = y

∂

∂x
− x ∂

∂y
.

Show that X and Y define vector fields X0 and Y0 on the standard two
sphere S2 of radius one.

i. Show that, with respect to the standard volume element on S2,
divX0 = 0 and div Y0 = 0.

ii. Calculate [X0, Y0].

(b) Let (M1, µ1) and (M2, µ2) be two compact volume manifolds without
boundary and let X1 be a smooth vector field on M1.

i. Explain how (M1×M2, µ1×µ2) is a volume manifold with volume
element µ1 × µ2 determined in a natural way from µ1 and µ2.

ii. Is it true that ∫
M1×M2

(divµ1 X1) µ1 × µ2

must be zero?

Solution (a) This part is straightforward. Consider the map

ϕ(x, y, z) = x2 + y2 + z2

and its regular value at 1. Note that ϕ−1(1) = S2. Then, X,Y ∈ T(x, y, z)S2

since at each point (x, y, z) ∈ S2 they are in the kernel of T(x,y,z)ϕ.

The divergence of X and Y is zero since the flows of their vector fields
correspond to pure rotations about the x and z axes respectively. Moreover,

[X0, Y0] = [X,Y ]|S2 = (X[Y ]− Y [X])|S2 = −z ∂
∂x

+ x
∂

∂z

which is a rotation about the y-axis.



Solution (b) Let πMi : M1 ×M2 → Mi denote the natural projection.
Then, M1 ×M2 is a volume manifold with volume element

µ1 × µ2 = (π∗1µ1) ∧ (π∗2µ2).

as described, e.g., in 7.5-10.

For the second part the answer is yes. The proof follows. Observe that

£X(µ1 × µ2) = divµ1×µ2(X)(µ1 × µ2)
= £X

(
π∗M1

µ1
)
∧
(
π∗M2

µ2
)

+
(
π∗M1

µ1
)
∧£X

(
π∗M2

µ2
)

= π∗M1

(
£(πM1

)∗Xµ1

)
∧
(
π∗M2

µ2
)

+
(
π∗M1

µ1
)
∧ π∗M2

(
£(πM2

)∗Xµ2

)
= (divµ1((πM1)∗X) + divµ2((πM2)∗X))µ1 × µ2

In summary,

divµ1×µ2(X) = divµ1((πM1)∗X) + divµ2((πM2)∗X)

Consider X = (X1,0) and compute∫
M1×M2

divµ1(X1)µ1 × µ2 =

∫
M1×M2

(divµ1(X) + divµ2(0))µ1 × µ2

=

∫
M1×M2

divµ1×µ2(X,0)µ1 × µ2

However by the divergence theorem∫
M1×M2

divµ1(X)µ1 × µ2 =

∫
M1×M2

divµ1×µ2(X,0)µ1 × µ2 = 0

since ∂M1 = ∂M2 = ∅.

5. (a) Let S1 be the standard two sphere of radius one in R3 and SR the
sphere of radius R. Let φ : S1 → SR be the map that takes x ∈ S1

to Rx ∈ SR. Show that φ is an orientation preserving diffeomorphism
and state the change of variables formula for this map.

(b) Let the vector field X on R3 be defined by

X = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

and let Ft be its flow. Show that the flow defines, for each t, an
orientation preserving diffeomorphism of S1 to a sphere of another
radius R(t).



(c) Let f(x, y, z, t) be a time dependent function on R3 and also use the
notation f to denote its restriction to a sphere. Let µR denote the
standard area form on SR. Find an expression for

d

dt

∫
SR(t)

fµR(t)

where R(t) is as in part (b) and check your calculation explicitly for
the function f that is identically one.

Solution (a) The map φ is an expansion of the sphere of radius one by
the factor R, and therefore, clearly preserves the outward or inward pointing
normal to the sphere. For µR ∈ Ω2(SR) and m ∈ S1, the change of variables
formula is given by,

(φ∗µR)m(v1, v2) = µR(Tmφ · v1, Tmφ · v2) = R2µ1(v1, v2).

Solution (b) From problem 1c the flow is Y is simply an expansion by
R(t) = et and by part (a) defines an orientation preserving diffeo from S1

to SR(t).

Solution (c) By the change of variables theorem,

d

dt

∫
Ft(S1)

fµR(t) =
d

dt

∫
S1

F ∗
t (fµR(t))

=
d

dt

∫
S1

e2t(f ◦ Ft)µ1

=

∫
S1

d

dt

(
e2tf(etx, ety, etz, t)µ1

)
This expression can be further simplified by recalling techniques used in the
proof of the transport theorem.

d

dt

∫
Ft(S1)

fµR(t) =

∫
S1

d

dt

(
e2t(F ∗

t f)µ1
)

=

∫
S1

e2tF ∗
t

(
2f + £Xf +

∂f

∂t

)
µ1

=

∫
SR(t)

(
2f + £Xf +

∂f

∂t

)
µR(t)



For f = 1, the formula simplifies to:

d

dt

∫
SR(t)

µR(t) = 2

∫
SR(t)

µR(t) = 8πe2t

6. (a) Consider the distribution on R3\ {0} that is given at the point (x, y, z)
by the set of vectors ai + bj + ck satisfying 6ax + 2by + 10cz = 0. Is
this distribution integrable? If so, find the corresponding integrable
manifolds.

(b) Let ω be a closed two form on a manifold M and let X be a vector field
with a flow Ft satisfying F ∗

t ω = ω. Show that the distribution defined
(at each point) to be the kernel of the one-form iXω is integrable.

(c) Denote coordinates on R2n by (qi, pi), where i ranges between 1 and
n and define the two-form ω by ω = dqi ∧ dpi (where a sum on i is
understood). Let H(q, p) be a given function and let X be the vector
field such that iXω = dH. Show that the conditions of part (b) hold
and determine the foliation in this case.

Solution (a) For a vector field X = a ∂
∂x + b ∂∂y + c ∂∂z one can write the

condition as:
df(X) = iXdf = 0

where f = 3x2 + y2 + 5z2 and df = 6xdx+ 2ydy + 10zdz. Suppose that X
and Y are in the distribution, i.e., iXdf = 0 and iY df = 0. Then by formula
(e)

i[X,Y ]df = £X(iY df)− iY (£Xdf) = −iY (£Xdf)

Using Cartan’s formula to expand the Lie derivative gives,

i[X,Y ]df = −iY (iXddf + diXdf) = 0

Hence, the distribution defined by iXdf = 0 is involutive, and by the Frobe-
nius theorem, integrable. The corresponding integrable manifolds are the
level sets of f .

Solution (b) We again use Frobenius. First observe that,

F ∗
t ω = ω =⇒ £Xω = 0 =⇒ diXω = 0



since ω is closed. This property is used to show that if X1 and X2 are in
the distribution then so is their bracket. Similar to (a),

i[X1,X2]iXω = £X1(iX2iXω)− iX2(£X1iXω)

= −iX2(£X1iXω)

= −iX2(diX1iXω + iX1diXω) = −iX2iX1diXω = 0

Thus, the distribution is involutive, and hence, integrable.

Solution (c) A direct calculation can be used to show that ω is in fact
closed. By the dynamical definition of the Lie derivative,

d

dt
F ∗
t ω = F ∗

t £Xω = F ∗
t (diXω + iXdω) = F ∗

t (ddH + iXdω) = F ∗
t (iXdω) = 0

since ω is closed. Hence, the distribution defined by the kernel of iXω is
integrable. The integrable manifolds in this case are the level sets of constant
H or energy.


